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These are notes for a talk given in the Babyseminar on the Weil Conjectures in the Winter
Term 2023/24 at the University of Duisburg-Essen. The main references for this talk are [Mil13]
and [Mil80]. I would like to thank the organisers Giulio Marazza and Guillermo Gamarra for
discussing numerous questions with me.

Last time, we introduced étale cohomology and we computed

Hr(Uét,Gm) =


k×, r = 0
Pic(U), r = 1
0, r > 1

for a connected non-singular curve U over an algebraically closed field k. This time, we shall
leverage this computation to compute the cohomology of µn for curves. Then, we shall see
Poincaré duality for curves and finally, we will see purity for étale cohomology, which will allow
us to construct a Gysin exact sequence. That is, it will allow us to relate the cohomology of X
to the cohomology of a closed subscheme and its open complement.

For the remainder of the talk let k be an algebraically closed field.

1 The cohomology of µn

We have the Kummer exact sequence

0 → µn → Gm
·n−→ Gm → 0.

Since we already now the cohomology of Gm, we would like to use it to compute the cohomology
of µn. In order to do this, we have to understand what multiplication by n does on the Picard
group of a curve.

For this, we are going to identify the Picard group of a curve U with the group of Weil
divisors. That is, we have the sequence

K× →
⊕
x∈U

Z =: Div(U) → Pic(U) → 0.

Here K = k(U) is the field of rational functions on U , and the sum is over all closed points x ∈ U .
The map K× → Div(U) takes a rational function f to its associated divisor div(f). (These are
the principal divisors.) Denote the divisor corresponding with x by [x]. Then we can define for
any divisor D =

∑
x∈U nx[x] its degree as

∑
x∈U nx. (The sums are finite and therefore this is

well defined.) The divisor div(f) has degree 0, since a rational function has, with multiplicities,
as many zeroes as poles. Thus, the degree factors as a map Pic(U) → Z. We denote the kernel
of the degree map Div(U) → Z by Div0(U). and the quotient Div0(U)/ div(K×) by Pic0(U).
This is, in fact, also the kernel of the degree map Pic(U) → Z.
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Proposition 1.1 ([Mil13, Prop. 14.1]). Let X be a complete, connected, non-singular curve
over k. The sequence

0 → Pic0(X) → Pic(X) → Z → 0

is exact. For any integer n relatively prime to the characteristic of k, the map

Pic0(X) → Pic0(X); z 7→ nz

is surjective with kernel equal to a free Z/nZ-module of rank 2g, where g is the genus of X.

Proof. The first part of the statement follows immediately from the previous discussion.
The second part of the statement is a bit more involved. Assume first that k = C. Then

we can chose a basis ω1, . . . , ωg for the holomorphic differentials on the Riemann surface X(C),
and a basis γ1, . . . , γ2g for H1(X(C),Z) ∼= π1(X(C))ab. Let Λ be the subgroup (not sub-vector
space) of Cg generated by the vectors consisting of path integrals(∫

γi

ω1, . . . ,

∫
γi

ωg

)
for i = 1, . . . , 2g.

For each pair of points z0, z1 ∈ X(C), we choose a path γ(z0, z1) from z0 to z1, and we let

I(z0, z1) =
(∫

γ(z0,z1)
ω1, . . . ,

∫
γ(z0,z1)

ωg

)
∈ Cg.

Its image in Cg/Λ is independent of the choice of the path γ(z0, z1). (Integrals over closed loops
are invariant under homotopy, and the closed loop you get from composing two paths from z0
to z1 will be (up to homotopy) a linear combination of the γi.) We can now extend the map
[z1] − [z0] 7→ I(z0, z1) by linearity to a homomorphism

i : Div0(X) → Cg/Λ.

The famous theorem of Abel and the equally famous Jacobi Inversion Theorem imply that i
induces an isomorphism Pic0(X) → Cg/Λ.

Now, clearly for any n, the map Cg/Λ → Cg/Λ; x 7→ nx is surjective with kernel 1
nΛ/Λ ∼=

( 1
nZ/Z)2g ∼= (Z/nZ)2g, which completes the proof in the case k = C.

For an arbitrary algebraically closed field k, one can do something similar, but that requires
the theory of the Jacobian variety. (That is an abelian variety J of dimension g such that
Pic0(X) ∼= J(k). On J , one can perform the proof using the theory of abelian varieties.) ■

With this result in mind, we can compute the cohomology of µn.

Proposition 1.2 ([Mil13, Prop. 14.2]). Let X be a complete, connected, nonsingular curve over
k. For any n prime to the characteristic of k, we have

H0(X, µn) = µn(k), H1(X, µn) ∼= (Z/nZ)2g, H2(X, µn) ∼= Z/nZ,

and Hr(X, µn) = 0 for r > 2. Moreover, the isomorphism for H2(X, µn) ∼= Z/nZ is canonical.

Proof. We examine the long exact sequence associated with the Kummer exact sequence

· · · → Hr(Xét, µn) → Hr(Xét,Gm) ·n−→ Hr(Xét,Gm) → . . . .

If we fill in the cohomology computation of Hr(Xét,Gm) and use the previous proposition, the
statement follows.

Note that the isomorphism on H2(X, µn) is canonical as it is induced by the degree map on
Pic(X) using the Kummer exact sequence. ■
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Proposition 1.3 ([Mil13, Prop. 14.3]). Let U be a nonsingular curve over k. For any n prime
to the characteristic of k and closed point x ∈ U , we have

H2
x(U, µn) ∼= Z/nZ and Hr

x(U, µn) = 0 for r ̸= 2.

Proof. Let R be the Henselisation of OU,x. By a consequence of excision, we have for V = Spec R
that

Hr
x(U, µn) ∼= Hr

x(V, µn).

We again want to use the Kummer sequence to compute the cohomology. V is again a curve
and thus by the above description, we have Hr(V,Gm) = 0 for r > 0. Now the exact sequence
of the pair (V, V \ x)

· · · → Hr−1(V,Gm) → Hr−1(V \ x,Gm) → Hr
x(V,Gm) → Hr(V,Gm) → . . .

yields the isomorphisms Hr−1(V \ x,Gm) → Hr
x(Gm) for r ≥ 2. Now V \ x = Spec K where K

is the field of fractions of R, and Lang’s Theorem from last time shows that Hr(K,Gm) = 0 for
r ≥ 1; the theorem shows that Hr(K,Gm) = 0 for r ≥ 2 since the corresponding Galois module
Ksep is discrete and for this module particularly it is also shown that H2 vanishes. Furthermore,
H1(K,Gm) ∼= Pic(Spec K) = 0. We can now combine this with

H1
x(V,Gm) ∼= H0(K,GM )/H0(V,Gm) ∼= Z

and get the statement using the long exact sequence associated with the Kummer exact sequence.
■

Remark ([Mil13, Rmk. 14.4]). Let M be a free Z/nZ-module of rank 1 and let M also denote
the constant sheaf on a variety Y defined by M . Then we have

Hr(Yét, M) = Hr(Yét,Z/nZ) ⊗ M ∼= Hr(Yét,Z/nZ). ⌟

2 Cohomology with compact support
The next big goal of this talk is to prove Poincaré duality for curves. Classically, Poincaré
duality is the statement that for an oriented compact (real) manifold M of dimension n, we
have a canonical isomorphism Hk(M) ∼= Hn−k(M).

In algebraic geometry, we don’t have homology, but we can work around that by using the
universal coefficient theorem, at least if we take our coefficients in a field F , to get Hk(M) ∼=
Hn−k(M) ∼= Hom(Hn−k(M), F ). In order to prove this, one would like to get rid of the assump-
tion that M is compact. This is possible, by replacing Hk(M) by cohomology with compact
support, yielding Hk

c (M) ∼= Hom(Hn−k(M), F ). This is equivalent in constructing a canonical
perfect pairing

Hk
c (M) ⊗ Hn−k(M) → F,

which is essentially what we are going to do in the next section. (The perfect pairing will be the
cup product to Hn

c (M), which after choosing an orientation, is canonically isomorphic to F .)
With this in mind, we now want to define cohomology with compact support. Classically

for a topological space U , one defines cohomology groups with compact support as

Hr(U,Z) = colim−−−→
Z

Hr
Z(U,Z)

where the filtered colimit runs over the compact subsets of U .
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Unfortunately, this definition does not work in the world of algebraic geometry: If one
defines Γc(U, F) = colim−−−→Z

ΓZ(U, F) for an étale sheaf on F (the colimit runs over all complete
subvarieties of U , and then derives this functor to the right, one does not get a useful theory.
For example, if U is affine and one works over an algebraically closed field, then the cohomology
with compact support would not be finitely generated over the constant sheaf Z/nZ. Therefore,
we need a different definition.

On a topological space one has for j : U → X a homeomorphism of the topological space U
onto an open subset of a locally compact space X, then

Hr
c (U, F) = Hr(X, j!F).

(Recall that j! extends F by zero for an open immersion j.) In particular, when X is compact,
then Hr

c (U, F) = Hr(X, F).

Definition 2.1. For any torsion sheaf F on a variety U , we define

Hr
c (U, F) = Hr(X, j!F)

where X is any complete variety containing U as a dense open subvariety and j is the inclusion
map. ⌟

An open immersion j : U → X from U into a complete variety X such that j(U) is dense in
X is called a completion or compactification of U . Therefore, we call Hr

c (U, F) the cohomology
groups of F with compact support. (The name with complete support would be more logical,
but probably because the idea was copied from topology, so was the name.)

This definition rases two questions: First, does every variety admit a completion? And
second, are the cohomology groups with compact support independent of the completion? The
answer to both of these questions is affirmative. The first was shown by Nagata in 1962, and we
will deal with the second question next time (as well as more properties of cohomology groups
with compact support).

In the case of curves, we can work ourselves around the second issue by using the following
construction: Every curve U has a function field K and there is a one-to-one correspondence
between function fields and connected, complete, regular curves. Thus, we have a connected,
complete regular curve X associated with K, and with this comes a canonical open immersion
j : U → X. This yields a canonical choice X to compute the cohomology with compact support
of U , since we have

Hr
c (U, F) = Hr(X, j!F).

Because j! is exact, we can get long exact sequences on cohomology groups from short exact
sequences of sheaves on U . Since j! does not preserve injectives, it is not the rth right derived
functor of H0

c (U, −).

Proposition 2.2 ([Mil13, Prop. 14.5]). For any connected regular curve U over k and integer
n not divisible by the characteristic of k, there is a canonical isomorphism

H2
c (U ; µn) → Z/nZ.

Proof. We look at the exact sequence associated with the j! from Talk 4 [Mil13, Prop. 8.15]. So
let j : U → X be the canonical completion; in particular j is an open immersion. Let i : Z → X
be the closed immersion of the complement. Then, Z is zero-dimensional (and thus a finite
collection of Spec k’s). Then, we have the short exact sequence

0 → j!j
∗µn → µn → i∗i∗µn → 0,
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which in turn yields the long exact sequence on cohomology groups

· · · → Hr
c (U, µn) → Hr(X, µn) → Hr(X, i∗i∗µn) → · · · .

Now we know
Hr

c (X, i∗i∗µn) ∼= Hr(Z, i∗µn) = 0

for r > 0 as Z is zero-dimensional and k is algebraically closed. Therefore, Proposition 1.2 yields

H2
c (U, µn) ∼= H2(X, µn) ∼= Z/nZ,

where all isomorphisms are canonical. ■

Remark. For any x ∈ U , sheaf F on U and r ≥ 0, there is a canonical map Hr
x(U, F) →

Hr
c (U, F), as we shall see next time. For F = µn and r = 2, the map is compatible with the

isomorphisms in Proposition 1.3 and Proposition 2.2. ⌟

3 Poincaré Duality
Throughout this section U is a connected regular curve over k and n is an integer not divisible
by the characteristic of k.

Theorem 3.1 (Poincaré Duality, [Mil13, Thm. 14.7]). For any finite locally constant sheaf F
on U and integer r ≥ 0, there is a canonical perfect pairing of finite groups

Hr
c (U, F) × H2−r(U, F̌(1)) → H2

c (U, µn) ∼= Z/nZ.

We have talked about the involved cohomology theories. In order to understand the state-
ment, we still need to talk about three things: We need to define F̌(1), we need to say what
it means for a pairing to be perfect, we need to say what we mean by a finite locally constant
sheaf, and we need to construct the paring itself.

A pairing M × N → C is said to be perfect if the induced maps M → Hom(N, C) and
N → Hom(M, C) are isomorphisms. The statement of Poincaré duality thus says that the
groups Hr(U, F) and H2−r(U, F̌(1)) are dual with respect to this particular pairing.

A sheaf F on U is said to be finite locally constant if it is locally constant, killed by n, and
has finite stalks. Thus, for some finite étale covering U ′ → U , the sheaf F|U ′ is the constant
sheaf on U ′ defined by a finite Z/nZ-module M , and to give a finite locally constant sheaf F on
U is the same as to give a finite Z/nZ-module endowed with a continuous action of π1(U, u).

The sheaf F̌(1) is defined to be

V 7→ HomV (F|V , µn|V ).

Then we have for G := F̌(1) that F = Ǧ(1).
Next, we shall construct the pairing. In order to do that, we need to talk about Ext-groups.

For any variety X let Sh(X, n) be the full subcategory of Sh(Xét) consisting of sheaves of Z/nZ-
modules. For any étale sheaf on X, we have Hr(X, F) = Extr

X(Z, F). If F happens to be a
sheaf of Z/nZ-modules, we can also compute the cohomology group as Extr

X,n(Z/nZ, F), where
the index X, n means computing the ext group in the category Sh(X, n).

Now, we can define a pairing (in any abelian category, with objects A, B, C)

Extr(A, B) × Exts(B, C) → Extr+s(A, C)
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as follows. The elements of Extr(A, B), can be interpreted as equivalence classes of r-fold
extensions, i.e. an exact sequence

0 → B → E1 → · · · → Er → A → 0.

Given an s-fold extension

0 → C → E′
1 → · · · → E′

s → B → 0,

we can splice these together to an (r + s)-fold extension

0 → C → E′
1 → · · · → E′

s → E1 → . . . Er → A → 0,

which in turn defines an element of Er+s(A, C). This is, in fact, well defined and there are other
ways to define the pairing. For example, one could construct the pairing using iterated boundary
maps or by using composition in the derived category. Fortunately, all of these definitions yield
the same pairing.

In order to use this pairing for Theorem 3.1, we have to work slightly: Let j : U → X be a
compactification of our curve. Then, we have the pairing

Hr
c (U, F)×Ext2−r

X,n(j!F , j!µn) = Extr
X,n(Z/nZ, j!F)×Ext2−r

X,n(j!, F , j!µn) → Ext2
X,n(Z/nZ, j!µn) = H2

c (U, µn).

To identify the last ext group in there, we use that for an extension

0 → µn → E1 → . . . E2−r → F → 0,

we can apply the functor j!, which is exact. This yields a map Ext2−r
U,n (F , µn) → Ext2−r

X,n(j!F , j!µn).
Now, we can combine this with the following lemma to obtain the pairing for Poincaré duality.

Lemma 3.2 ([Mil13, Prop. 14.21]). Let F be locally constant, then Extr
U,n(F , µn) ∼= Hr(U, F̌(1)).

Proof. For arbitrary sheaves F and G, we can define a sheaf-hom Hom(F , G) via V 7→ Hom(F|V , G|V ).
Now, for F0 a locally constant sheaf of Z/nZ modules with finite stalks, the functor Hom(F0, −) : Sh(U, n) →
Sh(U, n) is left-exact, so we can derive it to the right to get local ext groups Exts. We can relate
these to global ext groups using a Grothendieck spectral sequence – we compose the sheaf-hom
with global sections to get the ordinary Hom. That is, we have

Hr(U, Exts(F0, G)) ⇒ Extr+s(F0, G).

Under the given assumptions, one can show that Exts(F0, G) = 0 for s > 0, which yields the
statement for the F from the lemma. ■

This actually leads to a generalisation of Poincaré duality.

Theorem 3.3 (Poincaré Duality, [Mil13, Thm. 14.20]). Let U be a nonsingular curve over k.
For all constructible sheaves F of Z/nZ-modules on U and all r ≥ 0, there is a canonical perfect
pairing of finite groups

Hr
c (U, F) × Ext2−r

U,n (F , µn) → Hr
c (U, µn) ∼= Z/nZ.

Definition 3.4. A sheaf F on X is called constructible, if X can be covered with finitely many
locally closed subschemes Y ⊂ X such that on each Y , the sheaf F|Y is finite locally constant. ⌟
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Equivalently [Mil80, Ch. 5, Prop 1.8], F is constructible if for all irreducible, closed subs-
chemes Z of X, there is a non-empty open U ⊂ Z such that F|U is locally constant with finite
stalks. In particular, if we choose Z = X, we find that there is a non-empty open subset U ⊂ X
such that F|U is finite locally constant.

One obtains the more general version of Poincaré duality from Theorem 3.1 using a spectral
sequence argument and a reduction to the open subset on which F is locally constant.

After taking a look at everything that goes into the statement of Poincaré duality for curves,
we shall now take a look at the proof of Theorem 3.1. The proof is done in a sequence of steps.

First, we deal with all cases where the pairing (should be) a pairing between zero-groups,
that is if r ̸= 0, 1, 2.

Step 0 For any torsion sheaf F , the group Hr(U, F) and Hr
c (U, F) are zero for r > 2.

This is a consequence of a more general vanishing result for étale cohomology, since Hr
c (U, F) =

Hr(X, j!F).

Theorem 3.5 ([Mil13, Thm. 15.1]). For any variety X over k, we have

Hr(X, F) = 0

for all torsion sheaves F on X if r > 2 dim X.
Moreover, if X is affine, then we have the above vanishing if r > dim X.

This proves Theorem 3.1 in all cases r ̸= 0, 1, 2. For the remaining cases we introduce the
following notation: Write T r(U, F) = H2−r

c (U, F̌(1))∨, where (−)∨ is the dual in the sense of
Hom(−,Z/nZ). Because in the category of Z/nZ-modules, a finite module M is canonically
isomorphic to (M∨)∨, we only have to prove that the map

φr(U, F) : Hr(U, F) → T r(U, F)

induced by the pairing is an isomorphism of finite groups for all finite locally constant sheaves
F on U .

Dualising preserves exactness and therefore F 7→ F̌(1) preserves exact sequences. So a
short exact sequence of finite locally constant sheaves gives rise to a long exact sequence on the
T r(U, −).

Step 1 Let π : U ′ → U be a finite map. Then the theorem holds for F on U ′ if and only if it
holds for π∗F on U .

Proof. This follows from the fact that π∗ is exact and preserves injectives, so Hr(U, π∗F) =
Hr(U ′, F), and a similar statement for T r. ■

Step 2 Let V = U \ x for some point x ∈ U . Then there is an exact commutative diagram
with isomorphisms where indicated

Hr
x(U, µn) Hr(U, µn) Hr(V, µn) Hr+1

x (U, µn)

H2−r(x,Z/nZ)∨ H2−r
c (U,Z/nZ)∨ H2−r

c (V,Z/nZ)∨ H3−r(x,Z/nZ)∨.

∼= φr(U,µn) φ(V,µn) ∼=

(We are interested in this step because this allows us to relate the cohomology of U with the
cohomology of the completion X of U .)
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Proof. The upper sequence is the long exact sequence of the pair (U, V ). The lower sequence is
the compact cohomology sequence of

0 → j!Z/nZ → Z/nZ → i∗i∗Z/nZ → 0

where j and i are the inclusions of V and x into U , respectively.
By Proposition 1.3, we have Hr

x(V, µn) = H0(x,Z/nZ) when r = 2 and the groups are zero
otherwise. The isomorphism for r = 2 comes from the pairing of Poincare Duality for the point
and one needs to put in some effort to see that the diagram commutes. ■

Step 3 The map φ0(U,Z/nZ) is an isomorphism of finite groups.

Proof. The pairing from Poincaré Duality

H0(U,Z/nZ) × H2
c (U, µn) → H2

c (U, µn) ∼= Z/nZ

can be identified with the canonical action of H0(U,Z/nZ) = Z/nZ on H2
c (U, µn). ■

Step 4 The theorem is true for r = 0 and F finite locally constant.

Proof. By assumption on F , we find a finite étale covering U ′ → U such that F|U ′ is constant.
Therefore, the idea is now to relate this back to Step 3. We can inject F|U ′ into some F ′ =
(Z/nZ)s. After applying π∗ to the inclusion F|U ′ → F ′ and composing the result with the
natural inclusion F → π∗π∗F , we obtain the first map in the sequence

0 → F → π∗F ′ → F ′′ → 0.

If we choose U ′ → U to be a Galois cover, one can show that F ′′ is again locally constant. Now
we can consider the diagram induced by φ0 and the associated long exact sequences

• • H0(U, F) H0(U, π∗F ′) H0(U, F ′′)

• • T 0(U, F) T 0(U, π∗F ′) T 0(U, F ′′),

∼= ∼= ∼=

where the right hand isomorphism comes from Steps 1 and 3. Now the result follows by applying
variations of the five-lemma twice. ■

Step 5 The map φ1(U, µn) is injective.

Proof. We leverage the fact that one can show H1(U,Z/nZ) = Homconts(π1(U, ū),Z/nZ). Thus
for s ∈ H1(U,Z/nZ), we have a Galois cover π : U ′ → U corresponding with the kernel of s. If
we denote the cokernel of Z/nZ → π∗(Z/nZ) by F ′′, we get the following diagram with exact
rows

H0(U, π∗Z/nZ) H0(U, F ′′) H1(U,Z/nZ) H1(U, π∗Z/nZ)

T 0(U, π∗Z/nZ) T 0(U, F ′′) T 1(U,Z/nZ) T 1(U, π∗Z/nZ).

∼= ∼=

(We get the isomorphisms from Step 4.) By construction s maps to zero under the map
H1(U,Z/nZ) → H1(U, π∗Z/nZ). Now a diagram chase shows that if s is in the kernel of
φ1(U,Z/nZ) then it has to be zero in H1(U,Z/nZ). ■
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Step 6 The maps φr(U,Z/nZ) are isomorphisms of finite groups for r = 1, 2.

Proof. We start with U = X. Then, we know the involved cohomology groups by earlier
computations and we know by Step 6 that the map φ1(X,Z/nZ) is injective. As both sides have
the same rank, φ1(X,Z/nZ) is an isomorphism. For r = 2, we have to show that the pairing

H2(X,Z/nZ) × µn(k) → H2(X, µn)

is perfect. This follows from the remark after Proposition 1.3.
In order to deduce the statement for U from the one of X, we remove the points of X \ U

one at a time and use Step 2 together with the five-lemma. ■

Step 7 The maps φr are isomorphisms of finite groups for r = 1, 2 and F finite locally constant.

Proof. Repeat what we did in step 4. ■

4 Cohomology purity and the Gysin sequence
Cohomology is contravariant in maps of schemes. Therefore, one can ask when it is also possible
to construct maps in the other direction, i.e. given a map of schemes X → Y when can we
construct a canonical map from the cohomology of X to the cohomology of Y . The case when
this map is a closed immersion is a consequence of so called cohomology purity, and it shall
allow us to compare the cohomology of a scheme X with the cohomology of a closed subscheme
and its open complement. This is the Gysin sequence.

Cohomology purity involves a twist of the sheaf that we are taking the cohomology groups
of, so we are going to define this first. Fix an integer n > 0 and let Λ = Z/nZ. For any ring
R such that n is a unit in R, we define µn(R) to be the group of n-th roots of 1 in R, and we
define

µn(R)⊗r =


µn(R) ⊗ · · · ⊗ µn(R), r copies, r > 0
Λ, r = 0
Hom(µn(R)⊗−r, Λ), r < 0.

When R is an integral domain and contains all n-th roots of unity, each of the µn is a free
module of rank 1 over Λ, and the choice of a primitive n-th root of 1 determines a basis for all
of them simultaneously.

Let X be a variety over k and assume that char k does not divide n (alternatively, we can
assume that X is a scheme with nOX = OX). We now define Λ(r) to be the sheaf on Xét such
that

Γ(U, Λ(r)) = µn(Γ(U, OU ))⊗r

for all U → X étale and affine. Since k is algebraically closed, it contains all n-th roots of unity
and therefore a choice of primitive n-th root of 1 in k determines isomorphisms Λ(r) → Λ for
all r. In particular, Λ(r) constant. For a sheaf F on Xét killed by n, we define

F(r) := F ⊗ Λ(r)

for all r ∈ Z.
A smooth pair (Z, X) of k-varieties is a nonsingular k-variety X together with a nonsingular

subvariety Z. We say that (Z, X) has codimension c if every connected component of Z has
codimension c in the corresponding component of X.
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Theorem 4.1 (Purity, [Mil13, Thm. 16.1]). For any smooth pair of k-varieties (Z, X) of
codimension c and locally constant sheaf F of Λ-modules on X, there are canonical isomorphisms

Hr−2c(Z, F(−c)) → Hr
Z(X, F)

for all r ≥ 0.

Corollary 4.2 ([Mil13, Cor 16.2]). In the situation of the theorem, there are isomorphisms

Hr(X, F) → Hr(U, F)

for 0 ≤ r < 2c − 1 and an exact sequence ( the Gysin sequence)

0 H2c−1(X, F) H2c−1(U, F|U )

H0(Z, F(−c)) H2c(X, F) H2c(U, F|U ) . . .

Hr−2c(Z, F(−c)) Hr(X, F) Hr(U, F) . . .

Proof. We can look at the long exact sequence for the pair (X, X\Z) and in that use the theorem
to replace the groups Hr

Z(X, F) with the groups Hr−2c(Z, F(−c)). Since negative cohomology
groups are zero, this yields the statement. ■

Example 4.3 (The cohomology of Pn, [Mil13, Example 16.3]). The scheme A1 is a curve and
thus, by the very beginning of this talk, we have H1(A1,Gm) = Pic(A1) = 0, since k[T ] is a
principal ideal domain. Thus, we have Hr(A1,Gm) = 0 for all r > 0 and the Kummer exact
sequence

0 → H0(A1, µn) → H0(A1,Gm)︸ ︷︷ ︸
=k×

n−→ H0(A1,Gm)︸ ︷︷ ︸
=k×

→ H1(A1, µn) → 0

yields that Hr(A1, µn) = 0 for r > 0. If we leap forward a few talks, to Talk 7, we can use the
Künneth formula to prove that Hr(Am, Λ) = 0 for r > 0, that is Am is acyclic. Therefore, the
Gysin sequence for (Pm−1,Pm) shows that

H0(Pm, Λ) ∼= H0(Am, Λ) ∼= Λ, H1(Pm, Λ) ↪→ H1(Am, Λ) = 0 and Hr−2(Pm−1, Λ(−1)) ∼= Hr(Pm, Λ),

for r ≥ 2. Now, an induction argument shows that

Hr(Pm, Λ) =
{

Λ(− r
2), r even, ≤ 2m;

0, otherwise.

(Incidentally, this essentially is the cohomomolgy of complex projective space with Λ-coefficients.)
⌟

Example 4.4 (Cohomology of a smooth hypersurface of Pm+1, [Mil13, Ex. 16.4]). Let X be a
nonsingular hypersurface in Pm+1, i.e. a closed subvariety of Pm+1 whose homogeneous ideal is
I(X) = (f) where f is a homogeneous polynomial in k[T0, . . . , Tm+1] such that the polynomial

f,
∂f

∂T0
, . . . ,

∂f

∂Tm+1
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don’t have a common zero in Pm+1. Then, the complement U = Pm+1 \X is affine, which implies
Hr(U, Λ) = 0 for r > m + 1. Therefore, the Gysin sequence yields maps

Hr(X, Λ) → Hr+2(P2, Λ(1))

which are isomorphisms for r > m and a surjection for r = m. Thus, we have Hr(X, Λ) ∼=
Hr+2(Pm+2, Λ(1)) ∼= Hr+2(Pm, Λ) for r > m (by the previous example) and Hm(X, Λ) ∼=
Hm(P2, Λ)⊕Hm(X, Λ)′, where Hm(X, Λ)′ is the kernel of the map Hm(X, Λ) → Hr+2(P2, Λ(1)).

If we now apply the general version of Poincaré duality, which we will see in Talk 8, we
obtain that

H∗(X, Λ) ∼= H∗(Pm, Λ) ⊕ Hm(X, Λ)′.

One can generalise this to the case where X is a smooth complete intersection in PN of dimension
m. That is if its homogeneous ideal is generated by by N − m polynomials and if the resulting
chain

PN ⊃ XN−1 ⊃ · · · ⊃ Xm = X

with Xr = Hr ∩ Xr+1 where Hr is a hypersurface in PN consists only of non-singular schemes.
The resulting decomposition of the cohomology groups is the same and it is again deduced by
an induction, Poincaré Duality and the Gysin sequence. ⌟

In order to prove Theorem 4.1, we need to generalise the statement a bit, and in order to do
that, we have to construct a right-adjoint of i∗ for a closed immersion i : Z → X. Along the lines
of what we have seen in Talk 3, one can see that the functors i∗ and i∗ define an equivalence of
categories between the category of étale sheaves on Z and the category of étale sheaves on X
supported on Z. Since by talk 3, i∗ preserves injectives, we have Hr(X, i∗F) = Hr(Z, F) for an
étale sheaf F on Z.

Let U = X \ Z be the complement of Z in X and denote the open immersion U → X by j.
For a sheaf F on X we define F ! to be the largest subsheaf of F with support on Z. Therefore,

we have for any étale φ : V → X that

F !(V ) = Γφ−1(U) = ker(F(V ) → F(φ−1(U))).

One can check that this defines a sheaf on X and that it agrees with ker(F → j∗j∗F).
Now, if G is a sheaf on X with support on Z, we have that any homomorphism α : G → F

factors through F ! and therefore

HomX(G, F !) = HomX(G, F).

We now define i!F := i∗F ! to be the corresponding sheaf on Z. Then we have using the above
equivalence

HomZ(G, i!F) = HomX(i∗G, F).

Thus, i! is the right adjoint of i∗. This implies that i! is left exact and because the left adjoint
i∗ is exact, it preserves injectives.

With this, we can state (and prove) the generalisation of Theorem 4.1.

Theorem 4.5 (Cohomology Purity, [Mil13, Thm. 16.7]). Let (Z, X) be a smooth pair of al-
gebraic varieties of codimension c. For any locally constant sheaf of Λ-modules on X, we have
R2ci!F ∼= (i∗F)(−c) and Rri!F = 0 for r ̸= 2c.

Proof of Theorem 4.1 using Theorem 4.5. The functor ΓZ(X, −) splits as

Sh(Xét) Sh(Zét) Ab.i! Γ(Z,−)
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As i! preserves injectives, we can use a Grothendieck spectral sequence to compute Hr
Z(X, F),

that is, we have
Er,s

2 = Hr(Z, Rsi!F) ⇒ Hr+s(X, F).

Now, Theorem 4.5 computes the left hand side and shows that the spectral sequence degenerates
on the E2-page. When analysing the degenerated spectral sequence, we get Theorem 4.1. ■

Proof idea for Theorem 4.5. First one constructs the map: Up to application of i∗ and i∗ to
sheaves, roughly the following happens. We consider the composition of sheaves on Z

F = HomX(Z/nZ, F) i∗R2ci!
−−−−→ HomX(i∗R2ci!(Z/nZ), i∗R2ci!(F)).

Using the adjunction of Hom and ⊗, and the adjunction of i∗ and i∗, we see that this yields a
morphism

i∗F ⊗ R2ci!(Z/nZ) → R2ci!(F).

Now, one can compute that R2ci!(Z/nZ) ∼= Λ(−c), which yields the desired twist.
One can check étale-locally that the morphism is an isomorphism. But étale locally, a

smooth pair is just a standard smooth pair (Am−c,Am). There, one can show the theorem using
induction, starting from the case c = m = 1, which is Proposition 1.3. ■
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