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We fix throughout Λ = Z/𝑛 seen as a sheaf of rings. We will usually
assume that 𝑛 is invertible in all schemes which we consider. All
sheaves considered will be seen in the category ModΛ = ModΛ(Ab(𝑋ét))
of Λ-modules. Most results remain true for 𝐷+(𝑋) = 𝐷+(𝑋ét, Λ) or
even 𝐷(𝑋) = 𝐷(𝑋ét, Λ) when 𝑋 is over a closed field, but we’ll mostly
stick to sheaves so as to be less scary. (Having said this, we
will always work with derived functors in the level of derived
categories. Leray now is written as

𝑅𝑓∗𝑅𝑔∗ = 𝑅(𝑓 ∘ 𝑔)∗

which is much cleaner.)
If 𝑀 is a sheaf on 𝑋 and 𝑌 → 𝑋 is a morphism, we will usually

denote the pullback of 𝑀 to 𝑌 by the same name if no confusion
arises. In particular Λ denotes the constant Λ sheaf on any scheme.
We will denote geometric points Spec(𝑘) → 𝑋 as 𝑥 → 𝑋. In particular
we wont put a bar on top of 𝑥 so as not to make the notation too
messy.

Main reference is [SGA4½, Arcata], but also Aaron Landesman notes
for the smooth base change theorem on B. Conrad’s Weil II seminar.
(This is essentially an expanded version of Deligne’s notes.)

1 Smooth base change
We start the talk with a variant theorem from the one seen last
time (the proper base change). First we reintroduce the setup. Let
𝑋 be an 𝑆-scheme and 𝑔 ∶ 𝑆′ → 𝑆 a morphism. We consider the cartesian
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diagram

𝑋′ 𝑋

𝑆′ 𝑆

𝑔′

𝑓 ′ 𝑓
𝑔

and recall there is a natural morphism 𝑔∗𝑅𝑓∗ → 𝑅𝑓 ′
∗𝑔′∗ given by the

push-pull adjunction and the natural morphism

𝑔′∗ (𝑓 ∗𝑅𝑓∗ → 1) .

Theorem 1 (Smooth base change). In the situation above, if 𝑆′/𝑆 is
smooth and 𝑋/𝑆 qcqs then the base change morphism

𝑔∗𝑅𝑓∗(𝑀) ∼
Ý→ 𝑅𝑓 ′

∗𝑔′∗(𝑀)

is an isomorphism for all complexes 𝑀 ∈ 𝐷+(𝑋) of Λ-modules.
One important corollary is the following: if 𝑋/𝑘 is defined over

a closed field and 𝑘 ⊂ 𝐾 is an extension with 𝐾 again closed, then

H𝑞(𝑋, Λ) ≅ H𝑞(𝑋𝐾, 𝑀𝐾)

is an isomorphism for Λ torsion of order prime to the character-
sitic of 𝑘. This corollary is not formal topos-nonsense as it may
seem, and in fact, is false for 𝑘 and 𝐾 algebraically closed of
characteristic 𝑝 and 𝑀 = Z/𝑝 by Artin-Schreier theory.
Remark. B. Zavyalov has recently provided a simple (and clear!)
proof of Poincaré duality in the étale context, which implies the
above base-change result almost immedetely by more or less formal
reasons. This is done via the powerful machinery of 6-functors
formalisms (and higher category theory). As it stands, we will be
following the classical proof of Poincaré duality, which takes the
smooth base change theorem as input.
Remark. We’ll mention briefly that we can actually assume 𝑋 → 𝑆
finite type, separated and 𝑆 noetherian using noetherian approxi-
mations.
Remark. In what follows, one could for simplicity do as in SGA4½ and
limit ourselves to talking only about geometric points 𝑥 → 𝑋 with
𝑥 being the closure of the residue field of its image. However, a
fortiori, it follows from the smooth base change that one could then
use arbitrary closed fields as these preserve cohomology groups of
Λ-modules.
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1.1 Universal Local Acyclicity
Our strategy for proving this result is quite interesting, as
it boils down to having a precise control of the cohomological
degeneration of fibers of a smooth morphism. For this we arise at
the natural notion of “flatness” for étale cohomolgy.

First of all lets fix some notation. Let 𝑋 be a scheme and 𝑠 → 𝑆 a
geometric point. We will denote by 𝑆(𝑠) = Spec𝑂sh

𝑆,𝑠 the spectrum of the
strict henselization at 𝑠. If 𝑋/𝑆 is an 𝑆-scheme then 𝑋(𝑠) = 𝑋 ×𝑆 𝑆(𝑠)
is the pullback to this strictly henselian scheme. Similarly, 𝑋𝑠
is the (geometric) fiber 𝑋(𝑠) ×𝑆(𝑠)

𝑠.
An étale generalization of a geometric point 𝑠 → 𝑆 is a geometric

point 𝑡 → 𝑆(𝑠).

Definition 1. Let 𝑋 → 𝑆 be a morphism, 𝑥 → 𝑋 a point above 𝑠 → 𝑆,
and let 𝑡 be an étale generalization of 𝑠. We define the variety of
vanishing cycles of 𝑋/𝑆 at 𝑥 with respect to 𝑡.

𝑋𝑥
𝑡 = 𝑋(𝑥) ×𝑆(𝑠)

𝑡.

This is not of finite type in general. Intuitively, it consists
of all points which generalize 𝑥 above 𝑡. Intuitively, one wants
this space to be contractible, meaning that, locally at 𝑥, this
family does not degenerate too badly. Turns out we can make do
with a weaker notion.

Definition 2. Let 𝑓 ∶ 𝑋 → 𝑆 be a morphism. We say that 𝑓 is locally
acyclic if for all geometric points 𝑥 → 𝑋 mapping to 𝑠 → 𝑆 and
generalizations 𝑡 → Spec𝒪𝑆,𝑠 = 𝑆(𝑠) we have that

Λ ∼
Ý→ 𝑅Γ(𝑋𝑥

𝑡 , Λ)

is an isomorphism. In other words, if the cohomology of the
geometric fibers of 𝑋(𝑥) → 𝑆(𝑠) vary continuously.

The morphism 𝑋 → 𝑆 is said to be universally locally acyclic, or
ULA, if it is so after arbitrary base change 𝑆′ → 𝑆. (We won’t need
this notion, but cf. geometric Satake).

Remark. A result of Gabber says that if 𝑆 is noetherian and 𝑋/𝑆 is of
finite type, then LA implies ULA. In some sense, the reason we have
to use Noetherian reduction is because ULA is the definition we are
really interested in. (For experts: those are the “cohomologically
smooth” morphisms for the ℓ-adic 6-functors formalism).
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Example. If 𝑋 → 𝑆 is étale, then it is (universally) locally acyclic.
Indeed, the induced map on strict henselizations is an isomorphism.

Example. Note that if 𝑆 = Spec 𝑘, then any 𝑋/𝑆 is automatically
locally acyclic. This is because strict henselization 𝑋(𝑥) is
automatically Λ-acyclic since 𝑅Γ(𝑋(𝑥), 𝐹(𝑥)) = 𝐹𝑥 is exact.

However, if 𝑋/𝑆 is of finite type, then it is a deep theorem that
𝑋/𝑆 is universally locally acyclic. In particular it is unclear
that A1

𝑆 → 𝑆 is locally acyclic, even for 𝑆/𝑘 of finite type.

Assuming smooth base change, one can show that smooth morphisms
are (universally) locally acyclic. (Exercise, but see stacks
[0GJQ].) Instead, we’ll show that base change holds when 𝑆′ → 𝑆
is locally acyclic, and then reduce smooth base change to the
above.

1.2 Locally acyclic base change
Theorem 2. Let 𝑔 ∶ 𝑆′ → 𝑆 be locally acyclic. Then for all 𝑋 → 𝑆 qcqs
the base change morphism is an isomorphism.

We first start proving the above theorem in the very important
case of when 𝑋 = 𝑡 → 𝑆 is a geometric point. First some lemmas.

Lemma 1. Let 𝑋 → 𝑆 be finite and consider 𝑆′ → 𝑆 arbitrary. Let
𝑋′ = 𝑋 ×𝑆 𝑆′ and consider points 𝑥′, 𝑥, 𝑠′, 𝑠 in the natrual manner. Then
the natural map

𝑂sh
𝑥 ⊗𝑂sh𝑠

𝑂sh
𝑠′

∼
Ý→ 𝑂sh

𝑥′

is an isomorphism.

Lemma 2. Locally acyclic morphisms are stable under quasi-finite
base change (and descend over surjective quasi-finite maps).

Proof. Take 𝑆′ → 𝑆 locally acyclic and 𝑋 → 𝑆 quasi-finite. Fix also
geometric points 𝑥′, 𝑥, 𝑠′, 𝑠 above each other and consider the diagram

𝑋′
(𝑥′) 𝑋(𝑥)

𝑆′
(𝑠′) 𝑆(𝑠)
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By properties of henselian local ring, it follows that 𝑋(𝑥) is finite
over 𝑆(𝑠), and hence the square is cartesian by last lemma. But then
we see that the vanishing cycles of 𝑋′/𝑋 agree with the vanishing
cycles of 𝑆′/𝑆, hence we’re done.

Lemma 3. Let 𝑌 be a normal, integral scheme, and let 𝜂 be its
generic point. Then if 𝑓 ∶ 𝑋 → 𝑌 is an étale 𝑌-scheme, then

𝑋 = ∐
𝜆∈𝑓 −1(𝜂)

𝑋𝜆 → 𝑌,

with each 𝑋𝜆 (étale and) integral, normal over 𝑌.

EGAIV-18.10.7. Follows from a study of “geometrically unibranch”
schemes.

Proposition 1. Let 𝑠 → 𝑆 be a geometric point of 𝑆 and consider 𝑇 → 𝑆
locally acyclic. Consider the cartesian diagram

𝑇𝑠 𝑠

𝑇 𝑆

𝑔′

𝑓 ′ 𝑓
𝑔

Then 𝑔∗𝑓∗Λ = 𝑔∗𝑅𝑓∗Λ ∼
Ý→ 𝑅𝑓 ′

∗Λ.

Proof. We begin by considering 𝑋 ⊂ 𝑆 to be the adherence of 𝑠. We
then consider the normalization 𝑌 of 𝑋 in the geometric point 𝑘(𝑡).
By proper base change, since 𝑋 ↪ 𝑆 is proper, and 𝑌 → 𝑋 integral,
we can replace 𝑆 by 𝑌.

Now, 𝑌 is an non-noetherian scheme with the weird property that
all its local rings are already strictly henselian (since they are
normal and their fraction field is algebraically closed [Stacks,
0BSQ]). It is also an integral scheme and 𝑠 is now identified with
the generic point 𝜂 of 𝑌. Since 𝑌 is also normal we get that
𝑔∗𝑅𝑓∗Λ = (𝑅𝜂∗Λ)𝑇 ≅ Λ, where 𝑅𝜂∗Λ = Λ by the last lemma.

Finally, we consider the map Λ = 𝑔∗𝑅𝑓∗Λ → 𝑅𝑓 ′
∗Λ which we want to

show is an isomorphism. We do this at stalks, so fix a geometric
point 𝑠 of 𝑇. By the formula of stalk of pushforward, we must
compute the cohomology of 𝑇𝜂 base changed to 𝑠 → 𝑇. But then we
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have a diagram

𝑇𝑠
𝜂 𝑇𝜂 𝜂

𝑠 𝑇 𝑌

and therefore we see that

Λ ∼
Ý→ 𝑅Γ(𝑇𝑠

𝜂, Λ) = (𝑅𝑓 ′
∗Λ)𝑥

is an isomorphism from local acyclicity.

Remark. The above theorem tell us that the condition of local
acyclicity is very natural from the point of view of base change.
Namely if a class of morphisms is stable under quasi-finite base
change and the

Proof of ULA-base change (sketch). By the proper base change and
noetherian approximation we can assume that 𝑋 → 𝑆 is an open im-
mersion. Then we use a strong dévissage to reduce to the case of
sheaves in 𝑋 which are pushfoward from geometric points. The crux
of the proof lies in the fact that 𝑈′ = 𝑆′ ×𝑆 𝑈 → 𝑈 is also locally
acyclic by quasi-finite base change.

Staring at the diagram

𝑋′
𝑡 𝑡

𝑈′ 𝑈

𝑆′ 𝑆

for a geometric point 𝑡 of 𝑋, we obtain the base change for all 𝑡∗Λ
from the cases above.

1.3 Smooth morphisms are locally acyclic
The final step of smooth base change now, of course, is to prove
that smooth morphisms are (universally) locally acyclic.

Proposition 2. Composition of qcqs locally acyclic morphisms is
locally acyclic.
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Indeed, this is hard. We contend ourselves to proving the locally
noetherian case. Our proof hinges on the following very beautiful
lemma.

Lemma 4. Let 𝑋 → 𝑆 be locally acyclic with 𝑆 noetherian. Suppose
furthremore that the geometric fibers are acyclic, that is, the
canonical morphism

Λ ∼
Ý→ 𝑅Γ(𝑋𝑠, Λ)

is an isomorphism for every geometric point 𝑠 → 𝑆. Then the canonical
morphism Λ ∼

Ý→ 𝑅𝑓∗Λ is an isomorphism.

Proof of lemma. Passing to stalks, assume that 𝑆 is local. The
result actually holds for any sheaf 𝐹 that comes from Λ by base
change. Again, a strong dévissage argument reduces the case to
𝐹 = 𝑡∗Λ for 𝑡 → 𝑆 a geometric point.

We look at

𝑋𝑡 𝑡

𝑋 𝑆

𝜄𝑡

𝑓

and the base change now says that we have an identification 𝑓 ∗𝑡∗Λ ∼
Ý→

𝑅𝜄𝑡,∗Λ. We then have a diagram

(𝑅𝑓∗𝑓 ∗𝑡∗Λ)𝑠 𝑅Γ(𝑋𝑠, 𝜄∗𝑠 𝑅𝜄𝑡,∗Λ)

𝑅Γ(𝑆, 𝑅𝑓∗𝑅𝜄𝑡,∗Λ)

𝑅Γ(𝑋𝑡, Λ) 𝑅Γ(𝑋𝑠, Λ)

Λ

∼

∼

∼ ∼

which is commutative because the base change morphism commutes with
the Λ-module structure on both sides (take cohomology if a Λ-module
structure in the derive category scares you).
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Remark. In the above proof we used, crucially, that

Λ ∼
Ý→ 𝜄𝑠𝑅𝜄𝑡,∗Λ

for every étale generalization of the base. This is equivalent to
local acyclicity (more on this on the next section).

Proof. Now suppose that 𝑋 𝑓
Ý→ 𝑌 𝑔

Ý→ 𝑍 are locally acyclic. Then we
want to check that 𝑔 ∘ 𝑓 is also. We can suppose that 𝑋, 𝑌 and 𝑍 are
strictly local and we want to show that

𝑅Γ(𝑋𝑧, Λ) = Λ,

for all geometric fibers at 𝑧 → 𝑍. Now we know that 𝑌𝑧 are Λ-
acyclic because 𝑔 is locally acyclic. Moreover 𝑓𝑧 ∶ 𝑋𝑧 → 𝑌𝑧 is locally
acyclic by quasi-finite base change, and its geometric fibers, being
vanishing cycle varieties for 𝑓, are Λ-acyclic. We conclude that
𝑅𝑓𝑧,∗Λ = Λ and the theorem since

𝑅Γ(𝑋𝑧, Λ) = 𝑅Γ(𝑌𝑧, 𝑅𝑓𝑧,∗Λ) = Λ.

Theorem 3. Smooth morphisms are locally acyclic.

Proof. Every smooth morphism is Zariski locally, an étale open of
A𝑑

𝑆, hence we immediately reduce to affine space. But A𝑑
𝑆 → 𝑆 is just

a bunch of compositions of A1
𝑇 → 𝑇, so we may furthermore assume

𝑑 = 1. Finally, we can assume that the base is Noetherian strictly
henselian 𝑆 = Spec𝐴 and 𝑋 = Spec𝐴{𝑇}, the (strict) henselization of
𝐴[𝑇] at (𝑇, 𝔪𝐴).

What we want: for every geometric point 𝑠 → 𝑆 the fiber 𝑋𝑠 is
Λ-acyclic. Since 𝐴{𝑇} is a colimit of étale neighborhoods, hence
𝑋𝑠 is a limit of affine curves over 𝑠, and therefore 𝑅Γ(𝑋𝑠, Λ) is
concentrated in degrees 0, 1 by dimension results.

We now break this down into smaller propositions, each harder
than the next.

Proposition 3. The geometric fibers of 𝑋 → 𝑆 are connected.

Proof. Technical and not necessairly enlightening. We reduce to the
excellent case by noetherian reduction and then use the powerful
machinery of normalization.
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Proposition 4. The geometric fibers of 𝑋 → 𝑆 have no (Galois) étale
covers of order 𝑛 prime to the characteristic of the base field.

We have already mentioned this can fail without characteristic
assumption, and this is the crucial step where the base-change
results fail there.
Lemma 5 (Zariski-Nagata purity in dimension 2). Let 𝐶 be a regular
local ring of dimension 2 and 𝐶′ a finite and normal 𝐶-algebra which
is furthermore étale outside of the closed point of 𝐶. Then 𝐶′ is
already étale over 𝐶.
Proof. The ring 𝐶′ is normal and 2-dimensional at all maximal ideals.
It is CM by Serre’s critereon for normality, and since the base is
regular we can use miracle flatness to conclude that 𝐶′ is flat,
and hence free over 𝐶. Now the points where 𝐶′ is ramified over 𝐶
is defined by the zero locus of the discriminant, which contains
no point of height one, hence this locus is empty.

Lemma 6 (Case of Abhyankar). Let 𝑆 = Spec𝑉 be a trait1, 𝜋 a uni-
formizer, 𝜂 the generic point, 𝑋/𝑆 smooth, irreducible, and of
relative dimension 1. Let 𝑋𝜂 be a Galois covering of 𝑋𝜂, of degree
𝑛 invertible in 𝑆, and 𝑆1 = Spec𝑉[𝜋1/𝑛]. Then 𝑋𝜂,1 = 𝑋𝜂 ×𝑆 𝑆1 extends
to a Galois covering of 𝑋1 = 𝑋 ×𝑆 𝑆1.
Proof. Let 𝑋1 be the normalization of 𝑋1 in 𝑋𝜂,1. Then this is étale
over 𝑋1 generically (by construction) and in the generic point of
the special fiber (by tame ramification assumption and structure
of inertia). Hence we can use Zariski-Nagata purity.

Remark. Another related theorem by Deligne: if 𝑋 → 𝑆 is a morphism
of finite type between algebraic 𝑘-schemes, then there is an open
dense subset 𝑈 ⊂ 𝑆 for which 𝑋𝑈 → 𝑈 is universally locally acyclic.
Again, this implies the results of this section when working over
fields, and in fact Deligne’s proof depends upon them.

1.4 The la-proper base change
If 𝑓 ∶ 𝑋 → 𝑆 is a locally acyclic morphism, then one can define
cospecialization maps between the fibers of 𝑓. Given an étale
generalization 𝑡 → Spec𝑂𝑠ℎ

𝑆,𝑠, these are maps

𝑅Γ(𝑋𝑡, Λ) → 𝑅Γ(𝑋𝑠, Λ).
1means its a DVR
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To understand its definition we consider the maps

𝑋𝑡
ℎ
Ý→ 𝑋(𝑠)

𝑖←Ý 𝑋𝑠.

We define the nearby cycles of 𝑋/𝑆 to be

𝑅Ψ = 𝑖∗𝑅ℎ∗Λ ∈ 𝐷+(𝑋𝑠).

We now have an important observation:

Lemma 7. A morphism 𝑋 → 𝑆 is locally acyclic if and only if 𝐾 ∼
Ý→ 𝑅Ψ

is an isomorphism for all étale specializations of the base.

Proof. Since stalks commute with pullbacks, we obtain, by base
change of 𝑋𝑡 → 𝑋 along 𝑋(𝑥) → 𝑋, that for every geometric point 𝑥 of
𝑋𝑠,

𝑅Ψ𝑥
∼
Ý→ 𝑅Γ(𝑋(𝑥), 𝑅ℎ(𝑥),∗Λ) = 𝑅Γ(𝑋𝑥

𝑡 , Λ).

Now the canonical morphism Λ → 𝑅Γ(𝑋𝑥
𝑡 , Λ) is identified with the

morphism Λ → 𝑅Ψ𝑥 and we’re done.

Definition 3. Let 𝑋/𝑆 be locally acyclic and consider an étale
specialization 𝑡 of 𝑠 → 𝑆. The cospecialization morphism is defined
to be the composite

𝑅Γ(𝑋𝑡, Λ) = 𝑅Γ(𝑋(𝑠), 𝑅ℎ∗Λ) → 𝑅Γ(𝑋𝑠, 𝑅Ψ) = 𝑅Γ(𝑋𝑠, Λ).

Theorem 4. Let 𝑋 → 𝑆 be a proper, locally acyclic morphism. Then
all cospecialization morphisms

𝑅Γ(𝑋𝑡, Λ) → 𝑅Γ(𝑋𝑠, Λ)

are isomorphisms. In particular, the pushfoward 𝑅𝑓∗Λ is locally
constant constructible. The same holds for Λ replaced by an object
in 𝐷+(𝑋).

Proof. It follows by proper base change that 𝑅𝑓∗Λ is constructible,
and the stalks are the 𝑅Γ(𝑋𝑠, Λ) for 𝑠 → 𝑆, so the first part implies
the second. Now using again proper base change for the proper
morphism 𝑋(𝑠) → 𝑆(𝑠) applied to the torsion (derived) sheaf 𝑅ℎ∗Λ we
get

𝑅Γ(𝑋𝑡, Λ) = 𝑅Γ(𝑋(𝑠), 𝑅ℎ∗Λ) = (𝑅ℎ∗Λ)𝑠
∼
Ý→ 𝑅Γ(𝑋𝑠, 𝑖∗𝑅ℎ∗Λ) ≅ 𝑅Γ(𝑋𝑠, Λ)

which is what we want.
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Corollary 1. Let 𝑆 be a DVR, say 𝑆 = SpecZ𝑝, with closed point 𝑠 and
generic point 𝜂. Then if 𝑋/𝑆 is a proper and smooth 𝑆-scheme then,
after suitable choice of geometric points, there is a canonical
isomorphism

𝑅Γét(𝑋𝑠,Z𝑝) ∼
Ý→ 𝑅Γét(𝑋𝜂,Z𝑝).

Remark. In the proof above, one has to be a bit careful. Namely,
what we really use is that the cospecialization maps are, when 𝑋/𝑆
is proper, inverses of the specialization maps:

𝑅Γ(𝑋𝑠, 𝐾) ∼←Ý (𝑅𝑓∗𝐾)𝑠 = 𝑅Γ(𝑋(𝑠), 𝐾) → 𝑅Γ(𝑋𝑡, 𝐾).

Granted this, using noetherian approximation, one can then use
that a lcc sheaf are the constructible sheaves whose specialization
morphisms are equivalences.

Define 𝑅Φ(𝐾) to be the cone of 𝐾 → 𝑅Ψ(𝐾). Then there is an exact
triangle

𝑅Γ(𝑋𝑠, 𝐾) → 𝑅Γ(𝑋𝑡, 𝐾) → 𝑅Γ(𝑋𝑠, 𝑅Φ(𝐾)) →

and hence a proper morphism is locally acyclic precisely when the
specialization maps are isomorphisms.

2 The cup product and the Künneth formula
As a corollary, we obtain a Künneth formula for étale cohomology
in great generality. First we recall the projection formula: Let
𝐾 be an object in 𝐷(𝑋, 𝒪𝑋) and 𝐸 in 𝐷(𝑌, 𝒪𝑌). There a map

𝜋 ∶ 𝑅𝑓∗𝐾 ⊗𝐿 𝐸 → 𝑅𝑓∗(𝐾 ⊗𝐿 𝑓 ∗𝐸)

coming by adjunction from the counit 𝑓 ∗(𝑅𝑓∗𝐾⊗𝐿𝐸) = 𝑓 ∗𝑅𝑓∗𝐾⊗𝐿𝑓 ∗𝐸 → 𝐾⊗𝐿𝑓 ∗𝐸.
We say that the projection formula holds if the above map 𝜋 is an
isomorphism.

Proposition 5. Let 𝑋/𝑘 be a variety over a field with finite Λ-
cohomological dimension. Then the projection formula holds for
every pair of objects 𝐾, 𝐿 ∈ 𝐷(𝑋, Λ).

For the talk, we will assume this theorem. Since I didn’t find
a good reference for this, I will sketch the proof using Bhatt-
Scholze’s article.
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Definition 4. Let (𝑋, 𝒪𝑋) be a ringed topos. An object 𝐾 in 𝐷(𝑋, 𝒪𝑋)
is said to be perfect if, locally on 𝑋, it is quasi-isomorphic to
a complex of the form

𝐾 = [𝑀𝑛1
→ … → 𝑀𝑛𝑟

] ,

for finite-locally free 𝒪𝑋-modules 𝑀𝑖.

Lemma 8. Let 𝑓 ∶ 𝑋 → 𝑌 be a morphism of ringed topoi. Let 𝐾 ∈ 𝐷(𝑋, 𝒪𝑋)
and 𝐸 ∈ 𝐷(𝑌, 𝒪𝑌) and suppose furthermore 𝐸 perfect. Then, the
canonical morphism

𝑅𝑓∗𝐾 ⊗𝐿 𝐸 ∼
Ý→ 𝑅𝑓∗(𝐾 ⊗𝐿 𝑓 ∗𝐸)

is an isomorphism.

Proof. Essentially, a dévissage to the case where 𝐸 = Λ, where it
is obvious.

Theorem 5. Let 𝑋/𝑘 be a variety over a field with finite cohomo-
logical dimension. Then every object in 𝐷(𝑋, Λ) can be written as
a filtered colimit of constructible2 objects.

Proof. This is Proposition 6.4.8 on Bhatt-Scholze “The pro-étale
topology for schemes”.

Proof, of proposition. Writing 𝐾 as a colimit of constructibles we
can assume that 𝐾 is constructible. But then, by the previous lemma,
and compatibility with base change, the map 𝜋 is an isomorphism on
a stratification, and hence is an isomorphism.

Theorem 6 (Geometric Künneth). Let 𝑋, 𝑌 be varieties over a field
with finite cohomological dimension. Let 𝐸 ∈ 𝐷(𝑋, Λ) and 𝐾 ∈ (𝑌, Λ).
(The order of Λ is again assumed not to be divisible by the char-
acteristic of 𝑘.) Then there is a canonical isomorphism

𝑅Γ(𝑋 × 𝑌, pr∗
𝑋𝐸 ⊗𝐿 pr∗

𝑌𝐾) ≅ 𝑅Γ(𝑋, 𝐸) ⊗𝐿 𝑅Γ(𝑌, 𝐾).
2The right notion of constructibility here is that there is a constructible

decomposition 𝑋 = ⊔𝑋𝜆 with the derived sheaf 𝑀 ∈ 𝐷(𝑋) locally coming from a
locally perfect object, that is, 𝑀𝜆 ∈ 𝐷(𝑋𝜆) is the pullback of some perfect
object in 𝐷(𝜆), at least after passing to an étale cover of 𝑋𝜆.
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Proof. By locally acyclic base change we can write the diagram

𝑋 × 𝑌 𝑋

𝑌 Spec 𝑘

pr𝑋

pr𝑌 𝑓
𝑔

and we get that 𝑔∗𝑅Γ(𝑋, 𝐸) ∼
Ý→ pr𝑌,∗pr∗

𝑋𝐸. Using the projection formula
we get

𝑅Γ(𝑋 × 𝑌, pr∗
𝑋𝐸 ⊗𝐿 pr∗

𝑌𝐾) ≅ 𝑅Γ(𝑌, pr𝑌,∗(pr∗
𝑋𝐸 ⊗𝐿 pr∗

𝑌𝐾)) ≅ 𝑅Γ(𝑌, 𝐾 ⊗𝐿 𝑔∗𝑅Γ(𝑋, 𝐸)).

But this means that

𝑅Γ(𝑌, 𝐾 ⊗𝐿 𝑔∗𝑅Γ(𝑋, 𝐸)) = 𝑅Γ(𝑌, 𝐾) ⊗𝐿 𝑅Γ(𝑋, 𝐸)

and we’re done.

We observe that the Künneth formula is just base change and the
projection formula in disguise. Outside of the geometric setting we
must then use proper base change and the proper projection formula
to get the result.

Theorem 7 (Künneth variation). Let 𝑓 ∶ 𝑋 → 𝑆, 𝑔 ∶ 𝑌 → 𝑆 be 𝑆-schemes with
𝑋/𝑆 separated finite type and 𝑆 qcqs. Then there is a canonical
isomorphism

𝑅(𝑓 ×𝑆 𝑔)! (𝑅pr∗
𝑋𝐾 ⊗𝐿 𝑅pr∗

𝑌𝐿) ≅ 𝑅𝑓!𝐾 ⊗𝐿 𝑅𝑔∗𝐿

for 𝐾, 𝐿 in 𝐷+.

Proof. By proper base change, and the proof above, it is enough to
check the projection formula (with 𝑅𝑓∗ replaced by 𝑅𝑓!). If 𝑓 is
quasi compact open immersion, this is easy by looking at stalks;
the étale case follows with a bit more care. Then the proper case
can be checked by reducing to the case where 𝐿 is of the form 𝑔!Λ
for 𝑔 ∶ 𝑈 → 𝑋 étale, using smooth base change and the cases above.

2.1 The cup product
We observe in this subsection that the above theorem has a very
concrete interpretation in terms of cohomology sheaves, at least

13



when Λ = Z/ℓ or in the limit Λ = Qℓ. For some 𝐾 ∈ 𝐷(Z), we define the
graded cohomology group to be

H∗(𝐾) = ⨁
𝑝
H𝑝(𝐾).

Now we have the classical Künneth theorem.

Proposition 6. Let 𝐾, 𝐾′ be complexes of abelian groups. Then there
is a short exact sequence

0 → ⨁
𝑝+𝑞=𝑘

H𝑝(𝐾) ⊗ H𝑞(𝐾′) → H𝑘(𝐾 ⊗𝐿 𝐾′) → ⨁
𝑖+𝑗=𝑘−1

Tor1(H𝑖(𝐾),H𝑗(𝐾′)) → 0.

In general, we have a canonical map (called the cup product)

∪∶ H∗(𝐾) ⊗ H∗(𝐾′) → H∗(𝐾 ⊗ 𝐾′),

where the left hand side is the graded tensor product. Its construc-
tion is pretty straightfoward: interpreting H𝑗(𝐾′) as Hom(Z, 𝐾′[𝑗]),
one simply composes

Hom(Z, 𝐾′[𝑗]) → Hom(𝐾, 𝐾 ⊗𝐿 𝐾′[𝑗]) → Hom(𝐾[𝑖], 𝐾 ⊗𝐿 𝐾′[𝑖 + 𝑗]),

and then one uses the composition map (which is additive and bi-
linear)

H𝑖(𝐾) = Hom(Z, 𝐾[𝑖]) ⊗ Hom(𝐾[𝑖], 𝐾 ⊗𝐿 𝐾′[𝑖 + 𝑗]) → H𝑖+𝑗(𝐾 ⊗𝐿 𝐾′).

The Künneth theorem tells us conditions for this map being an
isomorphism, but it still allows us to define a ring structure on
cohomology regardless: Namely, if we have map of sheaves/complexes
𝐾 ⊗𝐿 𝐾′ → 𝐾″ then this induces a map

H∗(𝐾) ⊗ H∗(𝐾′) ∪
Ý→ H∗(𝐾 ⊗𝐿 𝐾′) → H∗(𝐾″).

In particular we collect the results of this section in the fol-
lowing.

Corollary 2. If 𝐾 ∈ 𝐷+(𝑋, Λ) has an algebra structure for the tensor
product ⊗𝐿, for example 𝐾 = Λ, then 𝑅𝑓∗𝐾 inherits one also, whose
multiplication is given by the “cup-product”. If 𝑋/𝑘 is a variety
over a field, then there is a canonical isomorphism

H∗(𝑋,Q𝑝) ⊗ H∗(𝑌,Q𝑝) ∼
Ý→ H∗(𝑋 × 𝑌,Q𝑝)

which is induced by the cup product.
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3 The cycle class map
We finish this talk by mentioning the cycle class map and its basic
properties. Let 𝑍 ↪ 𝑋 be a closed subsqueme of a 𝑘-variety 𝑋.
Let 𝑐 be the codimension of 𝑍 in 𝑋. Recall that we have a purity
isomorphism

H𝑟(𝑍, 𝑀) ∼
Ý→ H𝑟+2𝑐

𝑍 (𝑋, 𝑀(𝑐))
whenever both 𝑍 and 𝑋 are smooth.

Therefore, if 𝑍 is a connected, smooth closed subvariety of 𝑋,
we have a canonical class

cl𝑋(𝑍)∶ Λ = H0(𝑍, Λ) ∼
Ý→ H2𝑐

𝑍 (𝑋, Λ(𝑐)) → H𝑟(𝑋, Λ(𝑐)).
Theorem 8. The above constrution extends uniquely to a natural
morphpism of rings

cl𝑋 ∶ CH∗(𝑋) → ⨁
𝑟
H𝑟(𝑋, Λ(𝑟)).

The left hand side is the Chow ring of 𝑋: it is defined to be
the free abelian group 𝐶∗(𝑋) on irreducible closed subvarieties of
𝑋, modulo an equivalence relation of rationality: intuitively, two
𝑘-cycles are equivalent if there is an irreducible 𝑘 + 1-subvariety
𝑊 and a rational function 𝑓 ∈ 𝑘(𝜂) whose zero divisor is their
difference.

The Chow ring is functorial on 𝑋: if 𝑓 ∶ 𝑌 → 𝑋 is flat, then
𝑓 ∗ ∶ CH∗(𝑋) → CH∗(𝑌)

is exactly what you would expect: the map induced by the inverse
image of prime divisors.

Finally the ring structure can be defined as follows. Given
𝑍, 𝑍′ prime divisors intersecting transversely, meaning that the
codimention of 𝑍∩𝑍′ is the sum of the codimension of 𝑍 and 𝑍′, then
[𝑍].[𝑍]′ = [𝑍 ∩ 𝑍′]. This pins down a unique graded-ring structure on
CH∗(𝑋).
Example. Let 𝑋 = P𝑛. Then in fact the class map cl ∶ CH∗(𝑋) ∼

Ý→ H∗(𝑋) is
an isomorphism. This is in some sense a big coincidence, and very
far away from the general case. However, this works whenever we can
stratify 𝑋 by affine subvarieties, such as toric varieties and flag
varieties of reductive groups. (Essentially, cl is an isomorphism
if it is so on 𝑍 and 𝑈 = 𝑋 − 𝑍 for 𝑍 a closed subvariety. Hence
it is enough to stratify 𝑋 by things for which we know this to be
true. See Fulton Ex. 19.1.11.)

15


