Tropical Gromov-Witten Invariants

May 25,2021

Problem (Enumerative problem in $\mathbb{C}P^2$)

Compute the number

 $N^{irr}(g,d)$ (resp. N(g,d))

of irreducible (resp. all) curves in $\mathbb{C}P^2$ of degree d and genus g passing through a collection $\mathcal{Z} = \{z_1, \cdots, z_{3d-1+g}\}$ of (3d-1+g) points in $\mathbb{C}P^2$ in general position.

Remark

The number $N^{irr}(g, d)$ (resp. N(g, d)) is finite and does not depend on the choice of collection of points Z as long as the choice is generic.

Definition

The number $N^{irr}(g, d)$ (resp. N(g, d)) is known as the *Gromov-Witten invariant* (resp. *multicomponent Gromov-Witten invariant*) of $\mathbb{C}P^2$.

Remark

- The number $N^{irr}(0, d)$ was given by Kontsevich.
- The number N(g, d) was given by Caporaso-Harris.
- The number N(g, d) determines $N^{irr}(g, d)$, and vice versa (cf. Caporaso-Harris).

The following table lists some numbers

$N^{ m irr}(g,d)$					N(g, d)				
	d = 1	<i>d</i> = 2	<i>d</i> = 3	<i>d</i> = 4		d = 1	<i>d</i> = 2	<i>d</i> = 3	<i>d</i> = 4
g = 0	1	1	12	620	g = -1	0	3	21	666
g = 1	0	0	1	225	g = 0	1	1	12	675
g = 2	0	0	0	27	g = 1	0	0	1	225
g = 3	0	0	0	1	g = 2	0	0	0	27

Define

$N_{ ext{trop}}^{ ext{irr}}(g,d) \;(ext{resp.}\; N_{ ext{trop}}(g,d))$

to be the number of irreducible (resp. all) tropical curves of genus g and degree d passing through $\mathcal{P} = \{p_1, \dots, p_{3d-1+g}\}$ of (3d-1+g) points in \mathbb{R}^2 in general position (counted with the multiplicity).

The number $N_{\text{trop}}^{\text{irr}}(g, d)$ (resp. $N_{\text{trop}}(g, d)$) is called the *tropical Gromov-Witten invariants* (resp. *multi-component tropical Gromov-Witten invariants*) of \mathbb{R}^2 .

Theorem (Mikhalkin Correspondence Theorem)

The number $N^{\rm irr}(g,d)$ (resp. N(g,d)) equals the number $N^{\rm irr}_{\rm trop}(g,d)$ (resp. $N_{\rm trop}(g,d)$).

The first goal of this talk is to study the number $N_{\rm trop}^{\rm irr}(g,d)$ (resp. $N_{\rm trop}(g,d)$) and its combinatorial structure.

Definition (Graph)

Let I_1, \ldots, I_k be closed (bounded or half bounded) real intervals. Choose some (not necessarily distinct) boundary points P_1, \ldots, P_r and Q_1, \ldots, Q_r of the intervals $I_1 \coprod \ldots \coprod I_k$. The topological space Γ that is obtained by identifying P_i and Q_i for all $i = 1, \ldots, r$ in $I_1 \coprod \ldots \coprod I_k$ is called a graph. A graph is called connected if it is connected as a topological space.

- **()** The boundary points of the closed intervals I_1, \ldots, I_k are called the *flags* of Γ .
- Phe images of the flags in Γ are called the vertices of Γ. If F is a flag, its image in Γ (a vertex of Γ) will be denoted by ∂F.
- **3** Let V be a vertex. Define the valence of V, valence(V), as the number of flags F such that $\partial F = V$.
- The open intervals Int(I₁),..., Int(I_k) are called the *edges* of Γ. A flag F belongs to exactly one edge of Γ which shall be denoted by [F].
- O An edge is called *bounded* if its corresponding open interval is bounded, and unbounded if otherwise. The unbounded edges will also be called *ends* of Γ.

Tropical Gromov-Witten Invariants Enumerative problem in $\mathbb{C}P^2$ Parametrized tropical curves

Convention

- $\bullet~\Gamma'$ denotes the set of flags.
- $\bullet~\Gamma^0$ denotes the set of vertices.
- Γ_0^1 denotes the set of bounded edges.
- Γ^1_{∞} denotes the set of unbounded edges.

A weighted graph is a graph Γ together with weights, i.e. natural numbers prescribed to the edges. That is to say, if E_1, \ldots, E_k are edges of Γ , the weights are natural numbers w_1, \ldots, w_k associated to the edges E_1, \ldots, E_k respectively.

A parametrized tropical curve is a pair (Γ, h) where Γ is a weighted graph and $h: \Gamma \to \mathbb{R}^2$ is a continuous map such that:

- Γ is an abstract tropical curve, i.e. a graph such that all vertices have valence at least 3.
- **2** If *e* is an edge of Γ , then the map $h: e \hookrightarrow \Gamma \to \mathbb{R}^2$ takes the form:

$$h(t) = a + t \cdot v$$

where $a \in \mathbb{R}^2$ and $v \in \mathbb{Z}^2$. That is to say h is "affine linear with rational slop".

② At every vertex $V \in \Gamma^0$, the following *balancing condition* is satisfied. Let e_1, \ldots, e_k be edges adjacent to V, and let w_1, \ldots, w_k be their weights. Let $v_1, \ldots, v_m \in \mathbb{Z}^2$ be the primitive integer vectors at the point h(V) in the direction of the edges $h(e_i)$ (we take $v_i = 0$ if $h(e_i)$ is a point). We have

$$\sum_{j=1}^k w_j v_j = 0.$$

Definition

The image $h(\Gamma)$ shall be called the *tropical curve* of (Γ, h) .

Example (Parametrized tropical curve)

lf

$$f(x, y) = "\sum_{i,j} a_{ij} x^{i} y^{j}" := \max_{i,j} (a_{ij} + ix + iy)$$

is a tropical polynomial, we let $V_f \subset \mathbb{R}^2$ be the corresponding *tropical hypersurface*, i.e.

$$V_{f} := \left\{ (x_{0}, y_{0}) \in \mathbb{R}^{2} \mid \exists (i, j) \neq (k, l), f(x_{0}, y_{0}) = ``a_{ij}x_{0}^{i}y_{0}^{j}" = ``a_{kl}x_{0}^{k}y_{0}^{l}" \right\}$$

Theorem (Mikhalkin)

Any tropical curve can be identified with a tropical hypersurface V_f for some polynomial f. Conversely, any tropical hypersurface V_f in \mathbb{R}^2 can be parametrized by a tropical curve.

The genus of a graph Γ is defined to be

$$g(\Gamma) := 1 - \#\Gamma^0 + \#\Gamma_0^1.$$

The *genus* of a parametrized tropical curve (Γ, h) is defined to be the genus of the graph Γ . The *genus* of a tropical curve $h(\Gamma)$ is the minimum genus among all parameterizations of *C*.

Example (Genus)

Tropical Gromov-Witten Invariants Enumerative problem in $\mathbb{C}P^2$ Degree

Let $\mu_1, \ldots, \mu_m \in \mathbb{Z}^2$ be primitive integer vectors pointing out the direction of unbounded edges $h(e_1), \ldots, h(e_m)$ of $h(\Gamma)$. Assume that w_1, \ldots, w_m are the weights of e_1, \ldots, e_m . The primitive integer vectors $\mu_1, \ldots, \mu_m \in \mathbb{Z}^2$ can be reordered as

$$\mu_{(1,1)}, \ldots, \mu_{(1,s_1)}, \quad \mu_{(2,1)}, \ldots, \mu_{(2,s_2)}, \quad \ldots, \quad \mu_{(q,1)}, \ldots, \mu_{(q,s_q)}$$

such that $\sum_i s_i = m$ and

$$\begin{cases} \mu_{(i,s)} = \mu_{(j,t)} & \text{if } i = j \text{ for any } s, t \\ \mu_{(i,s)} \neq \mu_{(j,t)} & \text{if } i \neq j \text{ for any } s, t \end{cases}$$

The weights also inherit this ordering. One defines that

$$\tau_i = \sum_{t=1}^{s_i} w_{(i,t)} \mu_{(i,t)}$$

By the balancing condition, one sees that $\sum_i \tau_i = 0$.

Definition (Degree)

The degree of a parametrized tropical curve (Γ, h) is the set $\mathcal{T} = \{\tau_1, \ldots, \tau_q\} \subset \mathbb{Z}^2$. If the degree is the set $\Delta_d := \left\{ \begin{pmatrix} -d \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -d \end{pmatrix}, \begin{pmatrix} d \\ d \end{pmatrix} \right\}$, we call the parametrized tropical curve (Γ, h) is of degree d.

Example (Degree)

Lemma

Let C be a tropical curve, and let V be a 3-valent vertex of C. Let w_1, w_2, w_3 be the weights of the edges adjacent to V and let v_1, v_2, v_3 be the primitive integer vectors in the direction of the edges. Then, the following holds

 $w_1w_2|\det[v_1, v_2]| = w_2w_3|\det[v_2, v_3]| = w_3w_1|\det[v_3, v_1]|.$

Proof.

Note that the determinant $|\det[v_1, v_2]|$ is the area of the parallelogram spanned by v_1 and v_2 . The balancing condition tells us that $w_1v_1 + w_2v_2 + w_3v_3 = 0$. Say $v_i = \begin{pmatrix} a_i \\ b_i \end{pmatrix}$. Then, $\det[v_1, v_2] = a_1b_2 - a_2b_1$ and $\det[v_2, v_3] = a_2b_3 - a_3b_2$. Moreover, the balancing condition says $w_1a_1 + w_2a_2 + w_3a_3 = w_1b_1 + w_2b_2 + w_3b_3 = 0$. So, $w_1w_2a_1b_2 - w_1w_2a_2b_1 = w_2w_3a_2b_3 + w_3w_1a_3b_1 + w_3^2a_3b_3 = w_2w_3a_2b_3 - w_2w_3a_3b_2$.

Definition (Multiplicity)

Let C be a tropical curve. The *multiplicity* of C at its 3-valent vertex V is the positive integer $w_1w_2 |\det[v_1, v_2]|$, denoted by $\operatorname{mult}_V(C)$.

Let

$$f(x, y) = "\sum_{(i,j)\in A} a_{ij} x^i y^{j}" := \max_{(i,j)\in A} (a_{ij} + ix + iy)$$

be a tropical polynomial where $A \subset \mathbb{Z}^2_{\geq 0}$ is a finite subset. The *Newton polygon* of f is defined to be the convex hull $\Delta := \operatorname{ConvexHull}(A)$.

Remark

The degree of the graph of V_f is determined by the Newton polygon Δ of f. For each side $\Delta' \subset \partial \Delta$ we take the primitive integer outward normal vector and multiply it by the lattice length of Δ' to get the degree of C.

Let Δ be a Newton polygon in \mathbb{R}^2 . Let $\Delta_1, \ldots, \Delta_k$ be a collection of convex lattice polygons (given as convex hulls of their vertices in \mathbb{Z}^2), such that their interiors do not intersect, and such that their union is equal to Δ . Then the set

$$\operatorname{Sub}(\Delta) = \{\Delta_1, \ldots, \Delta_k\}$$

is called a *subdivision* of Δ . It is called *regular* if it is dual to a tropical curve. It is called *simple* if it contains only triangles and parallelograms.

Lemma

Every graph of a tropical hypersurface V_f has a subdivision dual to it. The number of unbounded edges counted with multiplicities equals $\#(\partial \Delta \cap \mathbb{Z}^2)$. The genus of V_f equals the number of interior vertices of this subdivision minus the number of parallelograms if the subdivision is simple.

A parameterized tropical curve $h: \Gamma \to \mathbb{R}^2$ is called *simple* if it satisfies to all of the following conditions.

- The graph Γ is 3-valent.
- The map *h* is an immersion.
- For any $y \in \mathbb{R}^2$ the inverse image $h^{-1}(y)$ consists of at most two points.
- If $a, b \in \Gamma$, $a \neq b$, are such that h(a) = h(b) then neither a nor b can be a vertex of Γ .

A tropical curve is called *simple* if it admits a simple parameterization.

Lemma

A tropical curve is simple if and only if its subdivision consists of triangles and parallelograms only.

Points p₁,..., p_k ∈ ℝ² are said to be *in general position tropically* if for any tropical curve h: Γ → ℝ² of genus g and with s ends such that k ≥ g + s - 1 and p₁,..., p_k ∈ h(Γ) we have the following conditions.
The tropical curve h: Γ → ℝ² is simple.
Inverse images h⁻¹(p₁),..., h⁻¹(p_k) are disjoint from the vertices of Γ.
k = g + s - 1.

Lemma

Two distinct points $p_1, p_2 \in \mathbb{R}^2$ are in general position tropically if and only if the slope of the line in \mathbb{R}^2 passing through p_1 and p_2 is irrational.

Proof.

If the slope of the line in \mathbb{R}^2 passing through p_1 and p_2 is rational, we can find a tropical line $h: \Gamma \to \mathbb{R}^2$ of genus 0 and of three ends with p_1 as its vertex, and $p_2 \in h(\Gamma)$. This contradicts condition (2).

The multiplicity of a tropical curve $C \subset \mathbb{R}^2$ of degree Δ and genus g, denoted by $\operatorname{mult}(C)$, equals to the product of the multiplicities of all the 3-valent vertices of C.

Let \mathcal{P} be a configuration of points in tropical general position. Define the number $N_{\text{trop}}^{\text{irr}}(g, \Delta)$ to be the number of irreducible tropical curves of genus g and degree Δ passing via \mathcal{P} where each such curve is counted with the multiplicity. Similarly we define the number $N_{\text{trop}}(g, \Delta)$ to be the number of all tropical curves of genus g and degree Δ passing via \mathcal{P} .

Theorem (Mikhalkin; Markwig)

The numbers $N_{\rm trop}^{\rm irr}(g,\Delta)$ and $N_{\rm trop}(g,\Delta)$ are finite and do not depend on the choice of ${\cal P}$.

Next, we want to understand the λ -increasing lattice paths and their "multiplicities", because they appear in the following interesting theorem.

Theorem

The number $N_{trop}(g, \Delta)$ is equal to the number of λ -increasing lattice paths $\gamma : [0, s + g - 1] \rightarrow \Delta$ with $\gamma(0) = p$ and $\gamma(s + g - 1) = q$ (counted with multiplicities).

A path $\gamma : [0, n] \to \mathbb{R}^2$, $n \in \mathbb{N}$, is called a *lattice path* if $\gamma|_{[j-1,j]}$, $j = 1, \ldots, n$ is an affine-linear map and $\gamma(j) \in \mathbb{Z}^2$, $j \in 0, \ldots, n$.

Let $\lambda : \mathbb{R}^2 \to \mathbb{R}$ be the map $\lambda(x, y) = x - \epsilon y$ where ϵ is a small irrational number. A lattice path $\gamma : [0, n] \to \mathbb{R}^2$ is called λ -increasing if $\lambda \circ \gamma$ is strictly increasing.

Remark

Let p and q be the points in Δ where $\lambda|_{\Delta}$ reaches its minimum (resp. maximum). Then p and q divide the boundary $\partial \Delta$ into two λ -increasing lattice paths

 $\begin{cases} \delta_+ : [0, n_+] \to \partial \Delta & \text{going clockwise around } \partial \Delta \\ \delta_- : [0, n_-] \to \partial \Delta & \text{going counterclockwise around } \partial \Delta \end{cases}$

where n_{\pm} denotes the number of integer points in the \pm -part of the boundary.

Let $\gamma : [0, n] \to \Delta$ be a λ -increasing path from p to q,that is, $\gamma(0) = p$ and $\gamma(n) = q$. The (positive and negative) multiplicities $\mu_+(\gamma)$ and $\mu_-(\gamma)$ are defined recursively as follows:

- $\mu_{\pm}(\delta_{\pm}) := 1.$
- If $\gamma \neq \delta_{\pm}$ let $k_{\pm} \in [0, n]$ be the smallest number such that γ makes a left turn (respectively a right turn) at $\gamma(k_{\pm})$. (If no such k_{\pm} exists we set $\mu_{\pm}(\gamma) := 0$). Define λ -increasing lattice paths γ'_{\pm} and γ''_{\pm} as follows:
 - $\gamma'_\pm: [0,n-1] o \Delta$ is the path that cuts the corner of $\gamma(k_\pm)$, i.e.

$$egin{cases} \gamma_{\pm}'(j) \coloneqq \gamma(j) & ext{ for } j < k_{\pm} \ \gamma_{\pm}'(j) \coloneqq \gamma(j+1) & ext{ for } j \geq k_{\pm} \end{cases}$$

• $\gamma_{\pm}^{\prime\prime}:[0,n] \to \Delta$ is the path that completes the corner of $\gamma(k_{\pm})$ to a parallelogram, i.e.

$$\begin{cases} \gamma_{\pm}^{\prime\prime}(j) := \gamma(j) & \text{if } j \neq k_{\pm} \\ \gamma_{\pm}^{\prime\prime}(j) := \gamma(j+1) + \gamma(j-1) - \gamma(j) & \text{if } j = k_{\pm} \end{cases}$$

Set

$$\mu_{\pm}(\gamma) := 2 \cdot \operatorname{Area} \mathcal{T} \cdot \mu_{\pm}(\gamma'_{\pm}) + \mu_{\pm}(\gamma''_{\pm})$$

where T is the triangle with vertices $\gamma(k_{\pm} - 1), \gamma(k_{\pm}), \gamma(k_{\pm} + 1)$. If γ_{\pm}'' is not inside Δ , $\mu_{\pm}(\gamma_{\pm}'') := 0$.

The multiplicity $\mu(\gamma)$ of a λ -increasing lattice path γ is defined to be $\mu(\gamma) := \mu_+(\gamma)\mu_-(\gamma).$

Let p and q be the points in Δ where $\lambda|_{\Delta}$ reaches its minimum (resp. maximum). Define $N_{\text{path}}(g, \Delta)$ to be the number of λ -increasing lattice paths $\gamma : [0, s + g - 1] \rightarrow \Delta$ with $\gamma(0) = p$ and $\gamma(s + g - 1) = q$ (counted with multiplicities).

Theorem

The number $N_{\mathrm{trop}}(g, \Delta)$ is equal to $N_{\mathrm{path}}(g, \Delta)$.

Tropical Gromov-Witten Invariants Enumerative problem in $\mathbb{C}P^2$ Lattice paths

Example

Let \mathcal{P} be a collection of 3d - 1 + g points in general position in the real projective plane $\mathbb{R}P^2$.

Definition

Define the number

 $N_{\mathbb{R}}^{\mathrm{irr}}(g, d, \mathcal{P})(\mathrm{resp.} \ N_{\mathbb{R}}(g, d, \mathcal{P}))$

to be the number of irreducible (resp. all) real curves of degree d and genus g which pass through the points of $\mathcal{P}.$

The number $N_{\mathbb{R}}^{\text{irr}}(g, d, \mathcal{P})$ does depend on the choice of \mathcal{P} . For example, the number $N(0, 3, \mathcal{P})$ can take values 8, 10, and 12 by a theorem of Degtyarev and Kharlamov.

A real non-degenerate double point Q of a nodal real curve C is called

- hyperbolic, if Q is the intersection of two real branches of the curve,
- *elliptic*, if Q is the intersection of two imaginary conjugated branches.

Let s(C) denote the number of elliptic double points of *C*. Define the *sign* of *C* to be $(-1)^{s(C)}$, and set

```
N_W^{irr}(g, d, \mathcal{P})(\text{resp. } N_W(g, d, \mathcal{P}))
```

to be the number of irreducible (resp. all) real curves of degree d and genus g which pass through the configuration \mathcal{P} counted with signs.

Theorem (Welschinger)

The number $N_W^{irr}(0, d, \mathcal{P})$ is invariant and does not depend on the choice of the configuration \mathcal{P} .

Remark

Therefore, the number $N_W^{\text{irr}}(0, d, \mathcal{P})$ can be denoted by W_d , and called *Welschinger invariants*. The absolute value of W_d provides a lower bound the numbers $N_{\mathbb{R}}^{\text{irr}}(0, d, \mathcal{P})$.

Recall that for a tropical curve C. For every 3-valent vertex V of C, we have defined its associated multiplicity $\operatorname{mult}_V(C)$.

Definition

Define the tropical Welschinger sign by

$$\operatorname{mult}^{\mathbb{R},W}(\mathcal{C}) := \prod_{V} \operatorname{mult}^{\mathbb{R},W}_{V}(\mathcal{C})$$

where the sum runs through all the 3-valent vertices V of C, and

$$\mathrm{mult}_V^{\mathbb{R},W}(\mathcal{C}) := \begin{cases} 0 & \text{if } \mathrm{mult}_V(\mathcal{C}) \text{ is even} \\ (-1)^{\frac{\mathrm{mult}_V(\mathcal{C})-1}{2}} & \text{if } \mathrm{mult}_V(\mathcal{C}) \text{ is odd} \end{cases}$$

Let $\mathcal{P} \subset \mathbb{R}^2$ be a configuration of s + g - 1 points in tropically general position where $s := #(\partial \Delta \cap \mathbb{Z}^2)$. Define the number

$$N_{W,\mathrm{trop}}^{\mathrm{irr}}(g,\Delta,\mathcal{P})(\mathsf{resp.}\;\;N_{W,\mathrm{trop}}(g,\Delta,\mathcal{P}))$$

to be the number of irreducible (resp. all) tropical curves of degree Δ and genus g which pass through the configuration \mathcal{P} counted with tropical Welschinger signs.

Theorem (Mikhalkin Correspondence Theorem for $\mathbb{R}P^2$)

Suppose that $\mathcal{P} \subset \mathbb{R}^2$ is a configuration of 3d + g - 1 points in tropically general position. Then there exists a configuration $\mathcal{Q} \subset \mathbb{R}P^2$ of 3d + g - 1 real points in general position such that

 $N_{W,\mathrm{trop}}^{\mathrm{irr}}(g,\Delta_d,\mathcal{P})=N_W^{\mathrm{irr}}(g,d,\mathcal{Q}) \text{ and } N_{W,\mathrm{trop}}(g,\Delta_d,\mathcal{P})=N_W(g,d,\mathcal{Q}).$

In particular, the number W_d equals $N_{W, \operatorname{trop}}^{\operatorname{irr}}(0, \Delta_d, \mathcal{P})$.

Recall the definitions in Lattice paths in the complex case.

Definition

Let $\gamma:[0,n] \to \Delta$ be a lattice path connecting $p,q \in \Delta$. Define the *Mikhalkin-Welschinger multiplicity* of γ by

 $\nu(\gamma) := \nu_+(\gamma) \cdot \nu_-(\gamma)$

where $\nu_{\pm}(\gamma)$ is defined (analogously as $\mu_{\pm}(\gamma)$ but replace

$$\mu_{\pm}(\gamma) := 2 \cdot \operatorname{Area} T \cdot \mu_{\pm}(\gamma'_{\pm}) + \mu_{\pm}(\gamma''_{\pm})$$

with)

$$\nu_{\pm}(\gamma) := b(T) \cdot \nu_{\pm}(\gamma'_{\pm}) + \nu_{\pm}(\gamma''_{\pm})$$

where

$$b(\mathcal{T}) := egin{cases} 0 & ext{if at least one side of } \mathcal{T} ext{ is even} \ (-1)^{\#(\operatorname{Int}(\mathcal{T})\cap\mathbb{Z}^2)} & ext{if otherwise} \end{cases}$$

Theorem

There exists a configuration $\mathcal P$ of s+g-1 generic points in $\mathbb RP^2$ such that the number $N_{W,\mathrm{trop}}(g,\Delta,\mathcal P)$ is equal to the number of λ -increasing lattice paths $\gamma:[0,s+g-1]\to\Delta$ connecting p and q counted with Mikhalkin-Welschinger multiplicities.

Remark

When g = 0, this theorem helps to compute the Welschinger invariant W_d .

Tropical Gromov-Witten Invariants Enumerative problem in $\mathbb{R}P^2$ Welschinger Lattice paths

Example

