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Virtual Fundamental Classes

Some motivating examples

Zeros of a section of a vector bundle

Construction (Cycle class of a section)

E: a locally free sheaf of rank r on some smooth X  E := V(E)→ X the vector
bundle

V(E) = SpecOX
(Sym∗E).

A section s : X → E with zero-subscheme Z ↔ a surjection p : E → IZ .
This gives the cartesian diagram (s0 := the zero-section)

Z //

��

X

s

��

X
s0

// E

Fulton’s intersection theory tells us how to associate to this: a class
[s] := s !

0([X ]) ∈ CHd−r (Z), d = dimX .

Remark

The class [s] := s !
0([X ]) ∈ CHd−r (Z) pushes forward to the top Chern class

cr (E) ∈ CHd−r (X ) = CHr (X ).
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Virtual Fundamental Classes

Some motivating examples

Case 1: a local complete intersection

We can view the surjection p : E → IZ as giving r generators for IZ , locally on X :
Take U ⊂ X with an isomorphism E|U ∼= Or

U = ⊕r
i=1OUei then

IZ |U = (p(e1), . . . , p(er ))OU .

Thus: Z has pure codimension r ⇒ Z is a local complete intersection on X and p
induces an isomorphism

p̄ : E ⊗OX
OZ

∼−→ IZ/I2
Z

Example (local complete intersections)

Suppose Z has pure codimension r on X , with irreducible components Z1, . . . ,Zm.
|Z | =

∑m
i=1 niZi , the associated cycle,

ni := lengthOX,Zi
OX ,Zi

/IZ

Then
s !

0([X ]) = |Z |.

In general s !
0([X ]) ∈ CHd−r (Z) is defined by the deformation to the normal cone:
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Virtual Fundamental Classes

Some motivating examples

Case 2: the general case

Construction (Deformation to the normal cone)

Take the blowup µ : Bls0(X )×0E × A1 → E × A1. Form the deformation space

Def (s0) = Bls0(X )×0E × A1 \ µ−1[E × 0] ⊂ Bls0(X )×0E × A1.

We have π : Def (s0)→ A1 with

π−1(A1 \ {0}) = E × (A1 \ {0}); π−1(0) = Ns0(X )E

Here Ns0(X )E is the normal bundle. Ns0(X )E ⊂ Def (s0) is a Cartier divisor.

Note that Ns0(X )E = E ; let EZ = E|Z with 0-section s0,EZ : Z → EZ .

Let C̃ = closure of s(X )× A1 \ {0} in Def (s0). Form the intersection product

(Ns0(X )E) · [C̃ ] ∈ CHd (Ns0(X )E ∩ C̃)

Since Ns0(X )E ∩ C̃ ⊂ EZ ⊂ E , we have

(Ns0(X )E) · [C̃ ] ∈ CHd (EZ )
s∗0,EZ
∼
// CHd−r (Z)

and
s !

0([X ]) := s∗0,EZ ((Ns0(X )E) · [C̃ ]).
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Virtual Fundamental Classes

Some motivating examples

Case 2: the general case

Construction (The normal cone and its embedding in EZ )

(Ns0(X )E) ∩ C̃ = Ci := SpecOZ
(⊕n≥0InZ/I

n+1
Z ), the normal cone of i : Z → X .

Let EZ := E ⊗OX
OZ . The surjection p : E → IZ  a surjection p̄ : EZ → IZ/I2

Z ,
inducing the surjection of graded OZ -algebras

Sym∗p̄ : Sym∗OZ
EZ → ⊕n≥0InZ/I

n+1
Z

Sym∗p̄ induces the closed immersion i : Ci → EZ which is exactly the closed
immersion Ns0(X )E ∩ C̃ ⊂ EZ . Thus:

s !
0([X ]) = s∗0,EZ (|Ci |).

An important fact: s∗0,EZ
(|Ci |) depends only on

i. The embedding i : Z → X

ii. The vector bundle EZ = V(EZ ) = SpecSym∗(EZ )

iii. The surjection p̄ : EZ → IZ/I2
Z

(ii) and (iii) require only information on Z itself!
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Virtual Fundamental Classes

Dependence on the closed immersion

A simple case

How does s∗0,EZ
(|Ci |) depend on i : Z → X?

A simple case: Take Y smooth over k. Take a morphism j : Z → Y and replace
i : Z → X with (i , j) : Z → X × Y . Then

IZ⊂X×Y /I2
Z⊂X×Y

∼= IZ/I2
Z ⊕ j∗ΩY/k

and pX : X × Y → X induces
pX : C(i,j) → Ci

making C(i,j) → Ci isomorphic to the pullback of TY by Ci → Z → Y .

We replace the surjection p̄ : EZ → IZ/I2
Z with

p̄′ : EZ ⊕ j∗ΩY/k → IZ⊂X×Y /I2
Z⊂X×Y .
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Virtual Fundamental Classes

Dependence on the closed immersion

How to encode the dependence on the closed immersion

To encode this dependence:

i : Z ↪→ X induces the exact sequence

IZ/I2
Z

d−→ i∗ΩX/k → ΩZ/k → 0

The surjection p̄ : EZ → IZ/I2
Z gives

d ◦ p̄ : EZ → i∗ΩX/k

and the map of complexes

(p̄, Id) : (EZ
d◦p̄−−→ i∗ΩX/k )→ (IZ/I2

Z
d−→ i∗ΩX/k ). (∗)

Since p̄ is surjective, (p̄, Id) satisfies:

h1((p̄, Id)) is surjective and h0((p̄, Id)) is an isomorphism.
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Virtual Fundamental Classes

Dependence on the closed immersion

How to encode the dependence on the closed immersion

We have the map of complexes for (i , j):

(EZ ⊕ j∗ΩY/k
d◦p̄′−−−→ (i , j)∗ΩX×Y/k )

(p̄′,Id)−−−−→ (IZ⊂X×Y /I2
Z⊂X×Y

d−→ i∗ΩX×Y/k ).
(∗∗)

The projection pX : X × Y → X induces a map of (∗) to (∗∗). Noting that

(i , j)∗ΩX×Y = i∗ΩX/k ⊕ j∗ΩY/k

and
IZ⊂X×Y /I2

Z⊂X×Y
∼= IZ/I2

Z ⊕ j∗ΩY/k

we see that in the commutative diagram

(EZ
d◦p̄−−→ i∗ΩX/k )

(p̄,Id)
//

p∗X
��

(IZ/I2
Z

d−→ i∗ΩX/k )

p∗X
��

(EZ ⊕ j∗ΩY/k
d◦p̄′−−−→ i∗ΩX/k ⊕ j∗ΩY/k )

(p̄′,Id)
// (IZ/I2

Z ⊕ j∗ΩY/k
d−→ i∗ΩX/k ⊕ j∗ΩY/k ).

the vertical arrows p∗X are both quasi-isomorphisms, that is

(p̄, Id) = (p̄′, Id)

as maps in Db(Coh(Z)).
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Virtual Fundamental Classes

Dependence on the closed immersion

How to encode the dependence on the closed immersion

What about the cones Ci and C(i,j)?

The map (∗) gives the commutative diagram

i∗TX
q′
// Ci

ι

��

i∗TX q
// EZ

Via q, i∗TX acts by translation on EZ and via q′ i∗TX acts on Ci .

Given (i , j) : Z → X × Y , TY ⊂ TX×Y acts on C(i,j) and

Ci
∼= TY \C(i,j), EZ

∼= TY \(EZ ⊕ j∗TY )

which gives

s∗0,EZ ([CZ/X ]) = s∗0,TY \(EZ⊕j∗TY )([TY \CZ/X×Y ]) = s∗0,EZ⊕j∗TY
([CZ/X×Y ]) ∈ CHd−r (Z).
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Virtual Fundamental Classes

Dependence on the closed immersion

How to encode the dependence on the closed immersion

Suppose q′ : i∗TX → Ci is injective, giving the “nice” quotient scheme i∗TX \Ci , the
vector bundle i∗TX \EZ on Z and the cartesian diagram

Ci
� � //

��

EZ

��

i∗TX \Ci
� � // i∗TX \EZ

which gives
s∗0,EZ ([CZ/X ]) = s∗0,i∗TX \EZ ([i∗TX \Ci ]) ∈ CHd−r (Z).

We thus have
i∗TX \Ci

∼= i∗TX×Y \C(i,j)

and
i∗TX \EZ

∼= i∗TX×Y \EZ ⊕ j∗TY
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Virtual Fundamental Classes

The theorems of Behrend-Fantechi

The intrinsic normal cone

Using the language of stacks and the category of perfect complexes, Behrend-Fantechi
give a “coordinate free” theory of virtual fundamental classes.

Definition

Let i : Z → X be a closed immersion of a scheme Z in a smooth k-scheme X . Let

q : i∗TX/k → Ci

be the map induced by d : IZ/I2
Z → i∗ΩX/k . The intrinsic normal cone of Z is the

stack quotient CZ := [i∗TX/k\Ci ].

Theorem (Behrend-Fantechi)

CZ is independent (up to canonical isomorphism) of the choice of closed immersion
Z → X . CZ has a fundamental class [CZ ] ∈ CH0(CZ ).

This takes care of the cone. Now for the vector bundle stack.
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Virtual Fundamental Classes

The theorems of Behrend-Fantechi

The cotangent complex

Definition

For a morphism of schemes f : X → Y we have the cotangent complex LX/Y in

Dperf (X ).

Using homological notation, LX/Y is supported in degrees [0, n] for some integer
n ≥ 0. If f is a smooth morphism, then LX/Y = ΩX/Y .

Proposition

Suppose X is a smooth k-scheme and i : Z → X is a closed immersion. Then

τ≤1LZ/k ∼= (IZ/I2
Z

d−→ i∗ΩX/k ).

The map (∗) gives us a two-term complex of locally free coherent sheaves on Z ,
E1 → E0 and a map (φ1, φ0) : (E1 → E0)→ τ≤1LZ/k in Db(Coh(Z)) such that
h1(φ1, φ0) is surjective and h0(φ1, φ0) is an isomorphism.
If Z is affine, this lifts to φ : (E1 → E0)→ LZ/k in Dperf (Z) with the same properties.
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Virtual Fundamental Classes

The theorems of Behrend-Fantechi

Perfect obstruction theories

We want to express the map (∗) used to define the closed immersion Ci ↪→ EZ in
invariant terms. We have already seen by example that by replacing EZ with the
complex EZ → i∗ΩX/k , replacing IZ/I2

Z with the complex τ≤1LZ/k and passing to

Db(Coh(Z)), we achieve a (partial) independence of the choice of embedding.
Generalizing this is the follow definition.

Definition

Let Z be a k-scheme. An obstruction theory on Z is morphism φ : E → LZ/k in

Dperf (Z) such that

i. h1(φ) is surjective and h0(φ) is an isomorphism

If in addition
ii. hi (E) = 0 for i > 0 or i < 1 (E has Tor-amplitude [0, 1]).

φ is a perfect obstruction theory.

Remark

1. Behrend-Fantechi work in the setting of Deligne-Mumford stacks over a
base-scheme S . All the notions described above extend to this setting.

2. The association of the vector bundle stack [i∗TX \EZ ] to the complex
EZ → i∗ΩX/k can be defined for an arbitrary perfect complex E in Dperf (Z), with the

associated vector bundle stack denoted by h1/h0(E∨) (or simply V(E)). This vector
bundle stack has virtual rank equal to minus the virtual rank h0 − h1 of E.

3. Some authors use E → τ≤1LZ in Db(CohZ ) instead of E → LZ in Dperf (Z).
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Virtual Fundamental Classes

The theorems of Behrend-Fantechi

The Behrend-Fantechi theorem on virtual fundamental classes

Theorem (Behrend-Fantechi)

Let Z be a “nice” Deligne-Mumford stack over some base-scheme S. A perfect
obstruction theory φ : E → LZ/S induces a canonical closed immersions of stacks

iφ : CZ/S → V(E). The virtual fundamental class [Z ]virφ is defined as

[Z ]virφ := s∗0,V(E)(iφ∗([CZ/S ])) ∈ CHrank(E)(Z).
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Virtual Fundamental Classes

The theorems of Behrend-Fantechi

The Behrend-Fantechi theorem on virtual fundamental classes

Remark

1. In our naive setting of a surjection EZ → IZ/I2
Z , with Z ⊂ X an embedded

scheme, and map (EZ → i∗ΩX/k )→ (IZ/I2
Z → i∗ΩX/k ), the virtual rank is

d − r := dimX − rank(EZ ) and the class [Z ]virφ is s∗0,EZ
(|Ci |) ∈ CHd−r (Z).

2. In more detail: V(E) = [i∗TX \EZ ], CZ = [i∗TX \Ci ] and we have the cartesian
diagram

Ci
� � //

π

��

EZ

π

��

CZ
� � // V(E)

with the vertical arrows smooth morphisms (of stacks) of relative dimension dimX .
The usual base-change results give

[Z ]virφ := s∗0,V(E)(|CZ |)

= s∗0,EZ (π∗|CZ |)

= s∗0,EZ (|Ci |)
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Virtual Fundamental Classes

Examples

The fundamental class as a virtual fundamental class

Example

Take X smooth over k of dimension d , so LX/k = ΩX/k . Take E := ΩX/k mapping to
LX/k by the identity. We compute the virtual class by taking the identity closed
immersion i : X → X . Then Ci = X , [Ci ] = [X ], EX is the 0-vector bundle X = X , so

[X ]virId = Id∗X ([X ]) = [X ]

the usual fundamental class of X .

Example

Let i : Z → X a local complete intersection codimension r closed subscheme of a
smooth X of dimension d . Then LZ/k = (IZ/I2

Z → i∗ΩX/k ) and IZ/I2
Z is a rank r

locally free sheaf on Z . Take the perfect obstruction theory IdLZ/k
. Then

Ci = V(IZ/I2
Z ) = EZ , so

[Z ]virId = s∗
0,V(IZ/I2

Z
)
(|V(IZ/I2

Z )|) = [Z ] ∈ CHd−r (Z)

the cycle associated to the dimension d − r scheme Z .
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Virtual Fundamental Classes

Examples

The Euler class as a virtual fundamental class

Example

Take X smooth over k of dimension d . Instead of the identity obstruction theory, let
F be an arbitrary locally free sheaf of rank r on X . This gives the obstruction theory

E = (F 0−→ ΩX/k )
(0F ,Id)−−−−−→ (0→ ΩX/k )

Again [Ci ] = [X ], but now EX = V(F) and φ : Ci → V(F) is the 0-section, so

[X ]vir(0F ,Id) = s∗0,V(F)(s0,V(F)∗([X ]) = cr (V(F)) ∈ CHd−r (X ).

If we take F = Ω∨
X/k

, then V(F) = T∨
X/k

and we get

[X ]vir(0Ω∨
X/k

,Id) = cd (T∨X/k ) = (−1)dcd (TX/k ) ∈ CH0(X )

If X is proper over k, then degk (cd (TX/k )) is the Euler characteristic of X , and

(−1)d [X ]vir
(0Ω∨

X/k
,Id)

is the Euler class of X .
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Virtual Fundamental Classes

Examples

The Euler class as a virtual fundamental class

Remark

This last example

Ω∨X/k
0−→ ΩX/k

is a (−1-shifted) symmetric perfect obstruction theory: E∨ ∼= E[−1]. Behrend showed
that if Z admits a symmetric perfect obstruction theory, then the associated virtual
fundamental class is independent of the choice of symmetric perfect obstruction
theory and is (in vague terms) a weighted Euler class associated to a constructible
function (the Behrend function) on Z .

Example (The critical locus)

Let X be smooth and take f : X → A1 a function. Let i : Z ↪→ X be the subscheme
defined by the vanishing of the section df of ΩX . We have the surjection
idf : Ω∨X → IZ sending a vector field v to the evaluation 〈v , df 〉, giving

īdf : i∗Ω∨X → IZ/I
2
Z . In local coordinates (x1, . . . , xn), idf sends ∂/∂xi to ∂f /∂xi .

The composition d ◦ īf : i∗Ω∨X → i∗ΩX is represented by the Hessian matrix

(∂2/∂xi∂xj ) restricted to Z , so

(i∗Ω∨X → i∗ΩX )→ (IZ/I2
Z → i∗ΩX )

gives a symmetric perfect obstruction theory (at least for Z affine).
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Virtual Fundamental Classes

Examples

Obstruction theories and moduli spaces

The basic problem of classical obstruction theory in algebraic geometry is to describe
the germ of a scheme M at some point x by giving a cohomological description of the
extensions of a morphism of a pointed Artin scheme f : (T , t)→ (M, x) to a morphism
(T̃ , t)→ (M, x) where T ⊂ T̃ is a closed subscheme defined by a square 0 ideal J .

For example, let M be a “moduli space/stack” for some moduli problem, with flat
universal family p : X → M. We have the problem of extending a cartesian square

Y

q

��

// X

p

��

T
f
// M

to a square over T̃ ; since p is universal, this is the same as the extension problem for
f . Here the obstruction lives in Ext2(q∗LX/M , q

∗J ) and if the obstruction vanishes,

the set of extensions is a principal homogeneous space for Ext1(q∗LX/M , q
∗J ) (Illusie,

Complexe cotangent, III Thm. 2.1.7).
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Virtual Fundamental Classes

Examples

Obstruction theories and moduli spaces

Example

Take T = Spec k, Y a smooth proper scheme over k, M = Def (Y ) the universal
deformation space of Y and X → M the universal family with f the map corresponding
to Y ∈ Def (Y ). Let T̃ = Spec k[ε]/(ε2) ⇒ the set of extensions = TY (Def (Y )).

LY/k = ΩY/k ,Exti (LY/k , (ε)) ∼= H i (Y ,TY/k )

Since we have the constant extension, the first obstruction vanishes and

TY (Def (Y )) ∼= H1(Y ,TY/k )

(proven by Kodaira-Spencer (1958)). For higher-order deformations, there may be
obstructions, this was studied by Kuranishi (1962-4), who showed that Def (Y ) can be
given as an analytic subset of a polydisk in H1(Y ,TY/k ), with equations given by the

system of higher-order obstructions in H2(Y ,TY/k ).
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Virtual Fundamental Classes

Examples

Obstruction theories and moduli spaces

To globalize the Kodaira-Spencer/Kuranishi construction: Assume p is Gorenstein,
with dualizing invertible sheaf ω concentrated in degree −dimX/M and let

E∗ := Rp∗(LX/M ⊗ ω)[−1]

We have the Kodaira-Spencer map LX/M → p∗LM [1] as part of the exact triangle

p∗LM → LX → LX/M → p∗LM [1]

which gives

E∗ → Rp∗(p
∗LM ⊗ ω) = LM ⊗ Rp∗(ω)

Id⊗Tr−−−−→ LM ⊗OM = LM .

where Tr is the canonical trace given by Grothendieck-Verdier-Serre duality. This gives
the obstruction theory E∗ → LM , which is a perfect obstruction theory if

i. No continuous automorphisms: H0(f −1(m), LX/M ⊗ ω ⊗ k(m)) = 0 for all m ∈ M

ii. dimX/M ≤ 2
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Virtual Fundamental Classes

Examples

Obstruction theories and moduli spaces

Remark (Obstruction theories and moduli spaces)

The whole machinery of perfect obstruction theories and virtual fundamental classes
arose because people wanted to do intersection theory on moduli spaces. The tangent
space and obstruction space at a point [X ] in the moduli space have a description in
terms Ext-groups on X , and this often leads to a (perfect) obstruction theory on the
moduli stack.

We give some examples of this to illustrate.

Example (The moduli space of stable curves)

Let Mg,n be the moduli (Artin) stack of n-pointed curves of genus g . The
construction outlined above gives a perfect obstruction theory with h1 = 0. We are
usually interested on the DM stack of stable curves M̄g,n (an open substack of Mg,n);
the restricted perfect obstruction theory gives us the usual fundamental class
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Virtual Fundamental Classes

Examples

Obstruction theories and moduli spaces

Example (The moduli space of stable maps)

Fix a smooth k-scheme X , an integer n and a genus g . There is a moduli stack of
stable maps of n-pointed genus g curves to X , M̄g,n(X ), with a universal family
π̄ : C̄g,n(X )→ M̄g,n(X ) and universal map F : C̄g,n(X )→ X .The fiber of π̄ over a
“map” f ∈ M̄g,n(X ) is the corresponding semi-stable genus g curve and the restriction
of F to π̄−1(f ) is the corresponding morphism.

π̄ is a projective flat relatively Gorenstein morphism: there is a locally free relative
dualizing sheaf ω (supported in degree −1).

Behrend constructs the virtual fundamental class via a relative perfect obstruction
theory. There is a morphism q :Mg,n(X )→Mg,n “forget the map to X” (these are
the Artin stacks: Mg,n(X ) := Maps(Cg,n,X )). The relative version is a map
E∗ → LMg,n(X )/Mg,n

with the same properties as before.
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Virtual Fundamental Classes

Examples

Obstruction theories and moduli spaces

Example (Continued)

Let Cg,n →Mg,n, Cg,n(X )→Mg,n(X ) be the universal curves, we have the cartesian
diagram

C̄g,n(X )
� � //

π̄

��

Cg,n(X ) //

π

��

Cg,n

��
M̄g,n(X )

� � //Mg,n(X )
q
//Mg,n

which gives an isomorphism π∗LMg,n(X )/Mg,n
∼= LCg,n(X )/Cg,n . Restricting to the

open substack M̄g,n(X ) gives π̄∗LM̄g,n(X )/Mg,n
∼= LC̄g,n(X )/Cg,n

The universal map F : C̄g,n → X induces dF : F∗ΩX → LC̄g,n(X ), which maps to

LC̄g,n(X )/Cg,n = π̄∗LM̄g,n(X )/Mg,n
. Taking

E∗ := Rπ̄∗(F
∗ΩX ⊗ ω)

we have maps

E∗
Rπ̄∗(dF⊗Id)−−−−−−−−→ Rπ̄∗(LC̄g,n(X )/Cg,n ⊗ ω) = Rπ̄∗(π

∗LM̄g,n(X )/Mg,n
⊗ ω)

= LM̄g,n(X )/Mg
⊗ Rπ̄∗(ω)

Id⊗Tr−−−−→ LM̄g,n(X )/Mg,n

giving the relative perfect obstruction theory φrel : E∗ → LM̄g,n(X )/Mg,n
.
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Virtual Fundamental Classes

Examples

Obstruction theories and moduli spaces

Example (Continued)

One can promote this to a perfect obstruction theory: We have the distinguished
triangle

LMg,n → LMg,n(X ) → LMg,n(X )/Mg,n

δ−→ LMg,n [1]

and the commutative square

E∗
δ◦φrel //

φrel

��

LMg,n [1]

LMg,n(X )/Mg,n

δ // LMg,n [1]

which we can complete to a map of distinguished triangles

LMg,n
// E ′∗ //

φ

��

E∗

φrel

��

δ◦φrel // LMg,n [1]

LMg,n
// LMg,n(X )

// LMg,n(X )/Mg,n

δ // LMg,n [1]

Then φ : E ′∗ → LMg,n(X ) is a perfect obstruction theory.
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Virtual Fundamental Classes

Examples

Obstruction theories and moduli spaces

Example (The Hilbert scheme of ideal sheaves on a CY threefold)

Let X be a Calabi-Yau threefold: smooth, projective, ωX
∼= OX and H1(X ,OX ) = 0.

Form the moduli stack M with M(Y ) = {(F , φ)} with F ∈ Coh(Y × X ),

φ : det(F)
∼−→ OY×X such that

i. F is flat over Y
ii. F is perfect
iii. For each y ∈ Y , EndOy×X

(Fy ) ∼= k(y)

(we also assume F is stable with a fixed Hilbert polynomial, but ignore this).
M is represented by an open subscheme M of a Hilbert scheme of sheaves on X . Let

F1 be the universal sheaf on M × X . Let F = Cone(RHom(F1,F1)
Tr−−→ O)[−1] and

let
E := Rp1∗RHom(F ,O)

E defines a perfect symmetric obstruction theory on M (see R.P.Thomas, A
holomorphic Casson invariant for CalabiYau 3-folds, and bundles on K3 fibrations, J.
Differential Geom. 54:2 (2000), 367-438 and Behrend-Fantechi Symmetric obstruction
theories and Hilbert schemes of points on threefolds, Algebra & Number Theory 2, no.
3 (2008))
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Virtual Fundamental Classes

Program

Program

Lecture 1. (Levine) Motivation and background from Gromov-Witten theory

Lectures 2/3. (Jin/Aranha) Chern-MacPherson-Schwartz classes/Overview of stacks
and derived schemes

Lecture 4. (Ravi) The Behrend-Fantechi virtual fundamental class

Lecture 5 (Yakerson) Localization of virtual classes

Lecture 6/7. Behrend’s work on symmetric obstruction theories

Lecture 8. (Tabakov) Deglise-Jin-Khan Fundamental classes

Lecture 9. (Aranha) Virtual classes for Artin stacks

Lecture 10. Khan’s virtual classes for quasi-smooth morphisms

Lecture 11. (D’Angelo) A comparison of the classes of Khan and those of
Behrend-Fantechi

Lecture 12. Virtual fundamental classes in motivic homotopy theory
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