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Recall from last week

k perfect field, X/k quasi-projective

Via the theory of characteristic cycles, one construct

cc : K0(Db
ctf (Xet ,Λ))→ CH∗(X )

by choosing a closed immersion i : X → M with M smooth of
dimension n and letting

cc(F) :=P(CC (i∗F)⊕ A1)

∈CHn(P(X ×M T ∗M ⊕ A1)) '
n⊕

i=0

CHi (X )

which is independent of the choice of i . The map cc is called
the (total) characteristic class (Ginsburg/Saito)

In characteristic 0, cc is proper covariant, and gives a solution
of the Deligne-Grothendieck conjecture

In positive characteristic, cc fails to be proper covariant,
except possibly the 0-dimensional part
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Goal of today

Construction of a cohomological trace map (Verdier pairing)

The trace map is always proper covariant (Lefschetz-Verdier
formula/Gauss-Bonnet formula)

In characteristic 0 it agrees with the 0-dimensional part of cc
(Kashiwara-Schapira); in positive characteristic this is a
conjecture (Saito)

Related to Behrend’s construction on DT-type invariants

This construction also works in SH, and is related to
A1-enumerative geometry
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Thom spaces in motivic homotopy

We work in the stable motivic homotopy category SH, but the
construction works for any motivic ∞-categories, as SH is the
universal such ∞-category (Robalo, Drew-Gallauer)

For a vector bundle V over a scheme X , the Thom space
Th(V ) is the pointed presheaf V /V − {0}
This construction passes through the P1-stabilization, and
induces a map

Th : K (X )→ Pic(SH(X ))

from the K -theory space to the Picard groupoid of SH(X ),
sending a virtual vector bundle v on X to a ⊗-invertible
object Th(v)
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(Twisted) bivariant groups in motivic homotopy

For f : X → S a separated morphism of finite type and v a
virtual vector bundle on X , define the mapping spectrum

H(X/S , v) := MapsSH(X )(Th(v), f !
1S)

whose homotopy groups πnH(X/S , v) define the twisted
bivariant groups or twisted Borel-Moore theory groups

Examples: in DM(X ), for r = virtual rank of v

π0H(X/k, v) = CHr (X )

In the category of Milnor-Witt motives,

π0H(X/k , v) = C̃H r (X , det(v))

is the (Borel-Moore type) Chow-Witt group

In the category of KGL-modules, πnH(X/S , v) = Gn(X )
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Functoriality of bivariant groups

Base change:

Y
q //

g

��
∆

X

f
��

T
p // S

∆∗ : H(T/S , v)→ H(Y /X , g∗v)

Proper push-forward: f : X → Y proper

f∗ : H(X/S , f ∗v)→ H(Y /S , v)

lci pullback: f : X → Y lci with virtual tangent bundle τf

f ∗ : H(Y /S , v)→ H(X/S , τf + f ∗v)

Product: X
f−→ Y

g−→ S

H(X/Y ,w)⊗ H(Y /S , v)→ H(X/S ,w + f ∗v)
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Local acyclicity

In étale cohomology, for f : X → S and F ∈ Db
ctf (Xet ,Λ), F

is locally acyclic over S

⇔ RΦfF = 0, where RΦf = vanishing cycle functor

Definition: for f : X → S and K ∈ SH(X ), K is strongly
locally acyclic over S if for any Cartesian square

Y
q //

g ��
X
f��

T p
// S

and any object L ∈ SH(T ), the canonical map

K ⊗ f ∗p∗L→ q∗(q
∗K ⊗ g∗L)

is an isomorphism.

We say that K is universally strongly locally acyclic
(abbreviated as USLA) over S if for any morphism T → S ,
the base change K|X×ST is strongly locally acyclic over T .
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Examples of local acyclicity

The USLA property is preserved by smooth pullbacks and
proper push-forwards

If X is smooth over S , then every dualizable object in SH(X )
is USLA over S

The case where S is the spectrum of a field is interesting:

Theorem (J.-Yang)

Let k be a field of exponential characteristic p and let X be a
separated k-scheme of finite type. Assume that either k is a
perfect field which satisfies strong resolution of singularities, or we
work with Z[1/p]-coefficients. Then every object of SH(X ) is
USLA over k .

This was first proved by Olsson in DM(X ,Q) for k
algebraically closed, and recently by Cisinski in étale motives

The proof uses generation of SH(X ) by Chow motives
(Ayoub, Bondarko-Déglise, Elmanto-Khan)
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(Ayoub, Bondarko-Déglise, Elmanto-Khan)

Trace maps in motivic homotopy



Künneth formula over a base

For f : X → S a separated morphism of finite type, denote
KX/S = f !

1S and DX/S(−) = Hom(−,KX/S)

Let X ,Y be two separated S-schemes of finite type, and let
pX : X ×S Y → X and pY : X ×S Y → Y be the projections,
and denote A�S B = p∗XA⊗ p∗YB

Theorem (Künneth formula)

For any L ∈ SHc(X ) constructible and any M ∈ SH(Y ) be USLA
over S , there is a canonical isomorphism

DX/S(L) �S M ' Hom(p∗XL, p
!
YM)
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Künneth formula over a base (II)

When S is a field, this is proved in SGA 4.5 and SGA 5 for
étale sheaves, and J.-Yang for SH

The relative case was first proved by Yang-Zhao and J.-Yang
under some smooth and transversality conditions, similar to
the ones related to the singular support in the last lecture

These results are extended to singular schemes by Lu-Zheng
for étale sheaves, and the arguments also work for SH with
minor changes
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Correspondences

For X → S a morphism, denote by p1, p2 : X ×S X → X the
projections

A (geometric) correspondence is a morphism of the form
c : C → X ×S X

Example: any S-endomorphism f : X → X is viewed as a
corrrespondence via the transpose of the graph
(f , id) : X → X ×S X

Denote by c1, c2 : C → X the compositions of c with p1 and
p2. Given K ∈ SHc(X ) USLA over S , a (cohomological)
correspondence over c is a map of the form u : c∗1K → c !

2K
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The trace map

Consider the following Cartesian diagram

Fix(c)
c ′ //

��

X
δX/S��

C
c // X ×S X .

Given a correspondence u : c∗1K → c !
2K , we have the

composition

u′ : 1C
u−→ Hom(c∗1K , c

!
2K ) ' c !Hom(p∗1K , p

!
2K )

Künneth' c !(DX/S(K ) �S K )

which gives rise to the following map

c ′!1Fix(c) ' δ∗X/Sc!1C
u′−→ δ∗X/Sc!c

!(DX/S(K ) �k K )

→δ∗X/S(K �k DX/S(K )) = DX/S(K )⊗ K ' K ⊗ DX/S(K )→ KX/S

The trace of u is the map Tr(u/S) : 1Fix(c) → KFix(c)/S

obtained by adjunction
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The trace map (II)

The trace map gives rise to the canonical map

Map(c∗1K , c
!
2K )

Tr(−/S)−−−−−→ H(Fix(c)/S).

If all schemes are equal to S , then this is the usual trace map

There is a twisted variant: given v is a virtual vector bundle
on C , there is a canonical map

Map(c∗1K , c
!
2K ⊗ Th(v))

Tr(−/S)−−−−−→ H(Fix(c)/S ,−v|Fix(c)).

More generally, Verdier pairing (SGA5): given two S-schemes
X1, X2, X12 := X1 ×S X2, C → X12, D → X12, Ki ∈ SHc(Xi )
USLA over S , u : c∗1K1 → c !

2K2, v : d∗2K2 → d !
1K1,

E := C ×X12 D then we have a pairing 〈u, v〉 : 1E → KE/S

The Verdier pairing can always be reduced to the trace map,
via the identity 〈u, v〉 = 〈vu, 1〉
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Properties of the trace map

If X/S smooth, C = X , c = δX/S , then Tr(id1X ) = e(TX/S)

Follows from the self-intersection formula (Déglise-J.-Khan)

Proper covariance (Lefschetz-Verdier formula): given a proper
morphism f : X → Y and

C
c //

p �� ∆

X ×S X
f×S f��

D
d
// Y ×S Y .

commutative with p also proper, which induce
q : Fix(c)→ Fix(d) proper. Then given K ∈ SHc(X ) USLA
over S and u : c∗1K → c !

2K , we have q∗Tr(u/S) = Tr(f∗u/S)

In particular, for X/S smooth proper, K = 1X and u = idK ,
one recovers the motivic Gauss-Bonnet formula

Étale contravariance: similar formulation
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Additivity of traces

Ferrand: the trace map is not additive in symmetric monoidal
triangulated categories

Deligne/Illusie: additivity in the filtered derived category

May: additivity for triangulated categories with“good”
triangulations

Groth-Ponto-Shulman: additivity in symmetric monoidal
stable derivators

Gallauer: generalization to finite homotopy colimits
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Additivity of traces (II)

Theorem (J.-Yang)

Let L→ M → N be a cofiber sequence in SHc(X ) of USLA
objects over S , and let

c∗1L
//

uL ��

c∗1M
//

uM��

c∗1N
uN��

c !
2L

// c !
2M

// c !
2N

be a morphism of cofiber sequences (in the ∞-categorical sense).

Then there is a canonical homotopy between Tr(uM/S) and
Tr(uL/S) + Tr(uN/S).

Here the higher-categorical structure is crucial
If S is a field, follow the May-Groth-Ponto-Shulman approach
and write down a big commutative diagram, using local duality
The general case reduces to S a field by conservativity of the
restriction to points
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Application to A1-enumerative geometry

Local terms: if β is an open subscheme of Fix(c), let
Trβ(u/S) ∈ H(β/S) be the restriction of Tr(u/S)

If β is in addition proper over S , let LTβ(u/S) ∈ End(1S) be
its degree (i.e. proper direct image)

q : X → S be a smooth morphism with a section s : S → X ,
c1 : C → X morphism of smooth S-schemes,
c2 := s ◦ q ◦ c1 : C → X

Cs
cs //

sC �� ∆

S
s��

C
c1 // X

The trace of the fundamental class of c2

u : c∗11X = 1C

ηc2' c !
21X ⊗ Th(−τc2)

agrees with ∆∗ηc1 ∈ H(Cs/S , τc1|Cs
)

Trace maps in motivic homotopy



Application to A1-enumerative geometry

Local terms: if β is an open subscheme of Fix(c), let
Trβ(u/S) ∈ H(β/S) be the restriction of Tr(u/S)

If β is in addition proper over S , let LTβ(u/S) ∈ End(1S) be
its degree (i.e. proper direct image)

q : X → S be a smooth morphism with a section s : S → X ,
c1 : C → X morphism of smooth S-schemes,
c2 := s ◦ q ◦ c1 : C → X

Cs
cs //

sC �� ∆

S
s��

C
c1 // X

The trace of the fundamental class of c2

u : c∗11X = 1C

ηc2' c !
21X ⊗ Th(−τc2)

agrees with ∆∗ηc1 ∈ H(Cs/S , τc1|Cs
)

Trace maps in motivic homotopy



Application to A1-enumerative geometry

Local terms: if β is an open subscheme of Fix(c), let
Trβ(u/S) ∈ H(β/S) be the restriction of Tr(u/S)

If β is in addition proper over S , let LTβ(u/S) ∈ End(1S) be
its degree (i.e. proper direct image)

q : X → S be a smooth morphism with a section s : S → X ,
c1 : C → X morphism of smooth S-schemes,
c2 := s ◦ q ◦ c1 : C → X

Cs
cs //

sC �� ∆

S
s��

C
c1 // X

The trace of the fundamental class of c2

u : c∗11X = 1C

ηc2' c !
21X ⊗ Th(−τc2)

agrees with ∆∗ηc1 ∈ H(Cs/S , τc1|Cs
)

Trace maps in motivic homotopy



Application to A1-enumerative geometry

Local terms: if β is an open subscheme of Fix(c), let
Trβ(u/S) ∈ H(β/S) be the restriction of Tr(u/S)

If β is in addition proper over S , let LTβ(u/S) ∈ End(1S) be
its degree (i.e. proper direct image)

q : X → S be a smooth morphism with a section s : S → X ,
c1 : C → X morphism of smooth S-schemes,
c2 := s ◦ q ◦ c1 : C → X

Cs
cs //

sC �� ∆

S
s��

C
c1 // X

The trace of the fundamental class of c2

u : c∗11X = 1C

ηc2' c !
21X ⊗ Th(−τc2)

agrees with ∆∗ηc1 ∈ H(Cs/S , τc1|Cs
)

Trace maps in motivic homotopy



Application to A1-enumerative geometry

Local terms: if β is an open subscheme of Fix(c), let
Trβ(u/S) ∈ H(β/S) be the restriction of Tr(u/S)

If β is in addition proper over S , let LTβ(u/S) ∈ End(1S) be
its degree (i.e. proper direct image)

q : X → S be a smooth morphism with a section s : S → X ,
c1 : C → X morphism of smooth S-schemes,
c2 := s ◦ q ◦ c1 : C → X

Cs
cs //

sC �� ∆

S
s��

C
c1 // X

The trace of the fundamental class of c2

u : c∗11X = 1C

ηc2' c !
21X ⊗ Th(−τc2)

agrees with ∆∗ηc1 ∈ H(Cs/S , τc1|Cs
)
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Application to A1-enumerative geometry (II)

If C = X and β is an open subscheme of Cs proper over S ,
then LTβ(u/S) recovers the local A1-Brouwer degree
(Kass-Wickelgren, Bachmann-Wickelgren)

If C = S , X is a vector bundle over S and β is an open
subscheme of Cs proper over S , then LTβ(u/S) recovers the
local contribution of the Euler class with support of the
section s : S → X (Levine)

Theorem (J.)

In the case where c = (c1, c2) satisfies the condition of being
contracting near β, then the local terms can be computed by some
simpler invariants called the naive local terms
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Application to A1-enumerative geometry (III)

The computation of local terms is hard in general (SGA 5 IIIb)

Over finite fields, Deligne conjectured that the situation is
easier of one compose with the Frobenius sufficiently many
times. This is proved by Pink assuming resolution of
singularities, and Fujiwara unconditionally using rigid geometry

In topology, Goresky-MacPherson proved useful formulas for
weakly hyperbolic maps, for which contracting maps are a
particular case

The proof of the theorem follows the ideas of an analogous
result of Varshavsky for étale sheaves, where the key
ingredients are the deformation to the normal cone and the
additivity of traces.

The proof in SH additionally uses the Fulton-style
specialization map on bivariant groups (Déglise-J.-Khan)
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